搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场对酞菁铁薄膜分子取向及形貌的影响

黄超 刘凌云 方军 张文华 王凯 高品 徐法强

引用本文:
Citation:

强磁场对酞菁铁薄膜分子取向及形貌的影响

黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强

High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films

Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang
PDF
导出引用
  • 有机半导体器件的性能在很大程度上受有机分子取向和堆积方式的影响,研究调控有机分子取向的方法对优化器件性能有重要意义. 在强磁场(8.5 T)下使用有机分子束沉积方法在Si(111)衬底上制备了酞菁铁薄膜. 应用X射线衍射、角分辨近边X射线吸收精细结构、偏振激光拉曼光谱、原子力显微镜等技术研究了磁场对酞菁铁薄膜的分子取向和形貌的影响. 结果表明,酞菁铁分子相对于衬底呈侧立构型并形成相的薄膜. 在强磁场作用下,分子平面与衬底的夹角由63.6增大为67.1,形成薄膜的结晶度明显提高,晶粒更加均匀,在衬底上的分布更加有序.
    Molecular orientation and stacking mode are commonly considered to have vital influence on the optoelectronic performances of organic semiconductor devices via changing the dynamics of charge carriers transferring among the molecules. Highly ordered and homogeneous stacking would allow a fast band transfer mechanism in the phase domain. Therefore the controls of the molecular orientation and the stacking behavior are of great significance for optimizing the device natures. In this work, the modification and control of iron phthalocyanine (FePc) molecular orientation on Si(111) are accomplished with the aid of high steady magnetic field at room temperature. The FePc films are grown in situ by organic molecular beam deposition on the Si(111) substrates under a high magnetic field strength of 8.5 T. The Si(111) substrates are preserved at room temperature and are kept perpendicular to the magnetic field. The influences of magnetic field on the molecular orientations and the morphologies of FePc thin films are investigated by X-ray diffraction, angle dependent near edge X-ray absorption fine structure (NEXAFS), Raman spectroscopy and atomic force microscopy (AFM). In the presence of the external magnetic field, the deposited FePc films each show a higher crystallinity and slightly closer packing in (002) plane than those without magnetic field. The AFM images verifies more ordered and uniform morphologies of the FePc films grown in the magnetic field. NEXAFS and Raman results both reveale a standing-up configuration of FePc molecules on the Si(111) substrate surface. The average tilting angle of the molecules changes from 63.6 to 67.1 when 8.5 T magnetic field is employed. The results demonstrate that the external high magnetic field distinctly enhances the orientation order of FePc molecules on Si(111) surface due to the magnetic-magnetic interactions between the magnetic field and the molecular magnetic moment. This work also demonstrates that external magnetic field is an efficient means to regulate the orientation and stacking behavior of magnetic molecules, which may open a new way to optimize the performances of the organic semiconductor devices.
      通信作者: 徐法强, fqxu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1232137,11575187)和中国科学院合肥大科学中心科学研究项目(批准号:2015SRG-HSC032)资助的课题.
      Corresponding author: Xu Fa-Qiang, fqxu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1232137, 11575187), and the Scientific Research Program of the Hefei Science Center, Chinese Academy of Sciences, China (Grant No. 2015SRG-HSC032).
    [1]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [2]

    Horowitz G 2004 J. Mater. Res. 19 1946

    [3]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216

    [4]

    Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003

    [5]

    Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969

    [6]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922

    [7]

    Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410

    [8]

    Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261

    [9]

    Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180

    [10]

    Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150

    [11]

    Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166

    [12]

    Dey S, Pal A J 2010 Langmuir 26 17139

    [13]

    Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301

    [14]

    Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89

    [15]

    Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263

    [16]

    Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125

    [17]

    Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339

    [18]

    Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643

    [19]

    Barraclough C G 1971 J. Chem. Phys. 55 1426

    [20]

    Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458

    [21]

    Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145

    [22]

    Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299

    [23]

    Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522

    [24]

    Stohr J, Outka D A 1987 Phys. Rev. B 36 7891

    [25]

    Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638

    [26]

    Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446

    [27]

    Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709

    [28]

    Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770

    [29]

    Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589

    [30]

    Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107

    [31]

    Basova T V, Kolesov B A 1998 Thin Solid Films 325 140

  • [1]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [2]

    Horowitz G 2004 J. Mater. Res. 19 1946

    [3]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216

    [4]

    Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003

    [5]

    Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969

    [6]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922

    [7]

    Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410

    [8]

    Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261

    [9]

    Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180

    [10]

    Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150

    [11]

    Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166

    [12]

    Dey S, Pal A J 2010 Langmuir 26 17139

    [13]

    Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301

    [14]

    Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89

    [15]

    Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263

    [16]

    Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125

    [17]

    Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339

    [18]

    Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643

    [19]

    Barraclough C G 1971 J. Chem. Phys. 55 1426

    [20]

    Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458

    [21]

    Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145

    [22]

    Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299

    [23]

    Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522

    [24]

    Stohr J, Outka D A 1987 Phys. Rev. B 36 7891

    [25]

    Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638

    [26]

    Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446

    [27]

    Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709

    [28]

    Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770

    [29]

    Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589

    [30]

    Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107

    [31]

    Basova T V, Kolesov B A 1998 Thin Solid Films 325 140

  • [1] 蓝湾, 迟晨阳, 郭迎春, 杨玉军, 王兵兵. 外加静电场下CO高次谐波谱. 物理学报, 2023, 72(13): 134202. doi: 10.7498/aps.72.20230560
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [4] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [5] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [6] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [7] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [8] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [9] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质. 物理学报, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [11] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [13] 汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺. 有机半导体的物理掺杂理论. 物理学报, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [14] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [15] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [16] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [17] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [18] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [19] 吴太权, 唐景昌, 朱 萍, 李海洋. 二己二硫醚多层膜局域结构的近边x射线吸收精细结构研究. 物理学报, 2005, 54(12): 5837-5844. doi: 10.7498/aps.54.5837
    [20] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
计量
  • 文章访问数:  6073
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-05-30
  • 刊出日期:  2016-08-05

/

返回文章
返回