搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标多约束优化超冷分子有限转动态取向

于镇洋 洪倩倩 易有根 束传存

引用本文:
Citation:

多目标多约束优化超冷分子有限转动态取向

于镇洋, 洪倩倩, 易有根, 束传存

Multi-objective and multi-constraint optimization of ultracold molecules with limited rotational dynamic orientation

YU Zhenyang, HONG Qianqian, YI Yougen, SHU Chuancun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 设计整形脉冲场调控分子取向在立体化学反应、强场电离及量子信息处理等领域具有重要的应用价值. 然而, 传统量子最优控制算法通常在无穷维转动空间中优化分子取向度, 且未充分考虑实验设计中脉冲所需满足的约束条件. 针对这一问题, 本文提出一种多目标多约束量子最优控制算法, 用于设计满足脉冲面积和能量约束的脉冲场, 以优化超冷分子有限个低位转动态的布居和相位分布, 从而得到最大分子取向. 研究结果表明, 通过调控约束条件, 可有效抑制非目标态空间转动态的影响, 在目标态空间内获得转动态布居和相位优化的相干叠加态, 形成期望的最大分子取向. 优化脉冲的时频谱分析结合含时取向度傅里叶变换谱计算表明, 获得的最大分子取向主要通过多色脉冲场的爬梯激发实现, 且高激发态相干对最大取向度的贡献较小. 本文为利用多约束优化算法设计实验可行性脉冲场, 通过精准调控有限个转动态产生最大分子取向提供了一种可参考的方法.
    The design of shaping pulse fields for controlling molecular orientation is of great importance in fields of stereochemical reactions, strong-field ionization, and quantum information processing. Traditional quantum optimal control algorithms typically solve the problem of molecular orientation in an infinite-dimensional rotational space, but they often overlook the constraints imposed by experimental limitations. In this work, a multi-objective and multi-constraint quantum optimal control algorithm is proposed to design a pulse field that conforms to the constraints of pulse area and energy. Specifically, the algorithm enforces a zero pulse area condition to eliminate the static field components and maintains constant pulse energy, ensuring compatibility with realistic experimental setups. Under these constraints, the algorithm optimizes the number and phase distribution of a selected number of low-lying rotational states in ultracold molecules to achieve maximum molecular orientation. The effectiveness of the proposed algorithm is demonstrated through numerical studies involving two- and three-state target subspaces, where the creation of a coherent superposition state with optimized population and phase distribution leads to the desired molecular orientation. Furthermore, its scalability is validated by applying it to a more complex 17-state subspace, where a maximum orientation value of 0.99055 is obtained, approaching the global optimal value of 1. Our findings demonstrate that by effectively managing these constraints, the influence of rotational states in the non-target state subspace can be substantially suppressed. The time-frequency analysis of the optimized pulses, combined with the Fourier transform spectrum of the time-dependent degree of orientation, indicates that the maximum molecular orientation is mainly achieved through ladder-climbing excitation of multi-color pulse fields, with the contributions from highly excited states being minimal. This work provides a valuable reference for designing experimentally feasible pulse fields using multi-constraint optimization algorithms, which helps to precisely control a limited number of rotational states to achieve maximum molecular orientation.
  • 图 1  脉冲场激发分子转动态调控分子取向模型示意图. 下面的蓝色能级表示目标态空间含有M个最低转动态; 灰色能级表示非目标态空间包含N个转动态. 本文通过使用多目标多约束量子最优控制理论算法寻找优化脉冲场调控目标空间转动态分布, 从而获得最优分子取向

    Fig. 1.  Schematic diagram of the molecular rotation states excited by the pulse field. The blue lines indicate that the target subspace consists of the lowest M rotational states, while the gray lines denote that the non-target subspace contains N rotational states above the target.

    图 2  无非目标态空间无约束少目标态态模型优化结果: 上排表示仅两态模型($ M = 2 $, $ N = 0 $)最大取向度 (a)、脉冲面积 (b)和脉冲能量 (c)随迭代次数变化曲线; 下排表示将优化获得脉冲 (d)用于四态模型($ M = 2 $, $ N = 2 $)所得的含时取向度 (e)及对应的转动态布居演化 (f)曲线

    Fig. 2.  The non-constrained optimization results for the model comprising two rotational states within the target subspace. The upper panels depict the maximum degree of orientation (a), pulse area (b), and pulse energy (c) as a function of interactions by excluding the non-target subspace. The lower panels illustrate the optimized time-dependent control fields (d) for the four-state model ($ M = 2 $, $ N = 2 $), alongside the corresponding orientation (e) and the population evolution (f) of the rotational states.

    图 3  含非目标态空间和约束条件两目标态模型($ M = 2 $, $ N = 2 $)优化结果: 上排最大取向度 (a)、脉冲面积 (b)和脉冲能量 (c)随迭代次数变化曲线; 下排表示优化获得脉冲 (d)及含时取向度 (e)及对应的转动态布居演化 (f)曲线

    Fig. 3.  The constrained optimization results for the model comprising two rotational states in the target subspace and two rotational state in the non-target subspace. The upper panels depict the maximum degree of orientation (a), pulse area (b), and pulse energy (c) as a function of interactions. The lower panels illustrate the optimized time-dependent control fields (d), alongside the corresponding orientation (e) and the population evolution of the rotational states (f).

    图 4  含非目标态空间和约束条件少目标态模型($ M = 2 $, $ N = 2 $)优化结果: 最大取向度 (a)、非目标态空间总布居 (b), 脉冲面积 (c)和脉冲能量 (d)随迭代次数变化曲线

    Fig. 4.  The constrained optimization results for the model comprising three rotational states in the target subspace and two rotational state in the non-target subspace. The maximum orientation (a), the total population in the non-target subspace (b), the pulse area (c), and the pulse energy (d) as a function of iterations.

    图 5  三目标态模型($ M = 2 $, $ N = 2 $)优化转动态布居 (a)和相位 (b)演化曲线

    Fig. 5.  The time-dependent populations and phases for the model consisting of three rotational states in the target subspace and two rotational states in the non-target subspace.

    图 6  三目标态模型($ M = 2 $, $ N = 2 $)优化含时脉冲场 (a), 对应的时频谱 (b), 含时取向度 (c)以及对应傅里叶变换谱 (d)

    Fig. 6.  The optimal time-dependent pulse field (a), the corresponding time- and frequency-resolved distributions (b), the time-dependent orientation degree (c), and the corresponding Fourier transform spectrum (d) for the model consisting of three rotational states in the target subspace and two rotational states in the non-target subspace.

    图 7  含非目标态空间和约束条件多目标态模型($ M = 17 $, $ N = 2 $)优化结果: 最大取向度 (a)、非目标态空间总布居 (b), 脉冲面积 (c)和脉冲能量 (d)随迭代次数变化曲线

    Fig. 7.  The constrained optimization results for the model comprising seventeen rotational states in the target subspace and two rotational states in the non-target subspace. The maximum orientation (a), the total population in the non-target subspace (b), the pulse area (c), and the pulse energy (d) as a function of iterations.

    图 8  优化的17态布居 (a)及对应的相位 (b)分布, (a)中红色三条符号代表理论计算的最优布居分布

    Fig. 8.  The optimal population (a) and phase (b) distribution of 17 rotational states in the target subspace. The red triangles in (a) denote the analyzed population distributions.

    图 9  十七目标态模型($ M = 17 $, $ N = 2 $)优化含时脉冲场 (a), 对应的时频谱 (b), 含时取向度 (c)以及对应傅里叶变换谱 (d)

    Fig. 9.  The optimal time-dependent pulse field (a), the corresponding time- and frequency-resolved distributions (b), the time-dependent orientation degree (c), and the corresponding Fourier transform spectrum (d) for the model consisting of seventeen rotational states in the target subspace and two rotational states in the non-target subspace.

  • [1]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104 250801Google Scholar

    [2]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [3]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48 411Google Scholar

    [4]

    Guo Y, Yang C, Xie X, Li Y, Houk K N, Guo X 2025 Sci. Adv. 11 eads0503Google Scholar

    [5]

    Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N 2019 Nat. Commun. 10 4815Google Scholar

    [6]

    Cai M R, Ye C, Dong H, Li Y 2022 Phys. Rev. Lett. 129 103201Google Scholar

    [7]

    Guo Y, Gong X, Ma S, Shu C C 2022 Phys. Rev. A 105 013102Google Scholar

    [8]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 15 8393Google Scholar

    [9]

    Ploenes L, Straňák P, Mishra A, Liu X, Pérez-Ríos J, Willitsch S 2024 Nat. Chem. 16 1876Google Scholar

    [10]

    Sawant R, Blackmore J A, Gregory P D, Mur-Petit J, Jaksch D, Aldegunde J, Hutson J M, Tarbutt M R, Cornish S L 2020 New J. Phys. 22 013027Google Scholar

    [11]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132 190001Google Scholar

    [12]

    Cornish S L, Tarbutt M R, Hazzard K R 2024 Nat. Phys. 20 730Google Scholar

    [13]

    Ding M, Li J S, Deng J, Lee M C, Jolly J, Shahine B, Pawlicki T, Ma C M 2012 J. Chem. Phys. 137 265

    [14]

    Tutunnikov I, Gershnabel E, Gold S, Averbukh I S 2018 J. Phys. Chem. Lett. 9 1105Google Scholar

    [15]

    Milner A A, Fordyce J A, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh I S 2019 Phys. Rev. Lett. 122 223201Google Scholar

    [16]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [17]

    Albert V V, Covey J P, Preskill J 2020 Phys. Rev. X 10 031050

    [18]

    Nalewajski R F 2014 J. Math. Chem. 52 1292Google Scholar

    [19]

    Pickering J D, Shepperson B, Hübschmann B A, Thorning F, Stapelfeldt H 2018 Phys. Rev. Lett. 120 113202Google Scholar

    [20]

    Qi D, Cao F, Xu S, Yao Y, He Y, Yao J, Ding P, Jin C, Deng L, Jia T, et al 2021 Phys. Rev. Appl. 15 024051Google Scholar

    [21]

    Loesch H, Remscheid A 1990 J. Chem. Phys. 93 4779Google Scholar

    [22]

    Friedrich B, Herschbach D 1991 Z. Phys. D 18 153Google Scholar

    [23]

    Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 111 1648Google Scholar

    [24]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91 035005Google Scholar

    [25]

    Nautiyal V V, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V 2021 Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 256 119663Google Scholar

    [26]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [27]

    Dion C, Keller A, Atabek O 2001 Eur. Phys. J. D 14 249Google Scholar

    [28]

    Machholm M, Henriksen N E 2001 Phys. Rev. Lett. 87 193001Google Scholar

    [29]

    Babilotte P, Hamraoui K, Billard F, Hertz E, Lavorel B, Faucher O, Sugny D 2016 Phys. Rev. A 94 043403Google Scholar

    [30]

    Shu C C, Yuan K J, Hu W H, Cong S L 2010 J. Chem. Phys. 132 244311Google Scholar

    [31]

    Fleischer S, Zhou Y, Field R W, Nelson K A 2011 Phys. Rev. Lett. 107 163603Google Scholar

    [32]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102 063124Google Scholar

    [33]

    Tutunnikov I, Xu L, Field R W, Nelson K A, Prior Y, Averbukh I S 2021 Phys. Rev. Res. 3 013249Google Scholar

    [34]

    De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103 153002Google Scholar

    [35]

    Oda K, Hita M, Minemoto S, Sakai H 2010 Phys. Rev. Lett. 104 213901Google Scholar

    [36]

    Znakovskaya I, Spanner M, De S, Li H, Ray D, Corkum P, Litvinyuk I V, Cocke C L, Kling M F 2014 Phys. Rev. Lett. 112 113005Google Scholar

    [37]

    Ren X, Makhija V, Li H, Kling M F, Kumarappan V 2014 Phys. Rev. A 90 013419Google Scholar

    [38]

    Lin K, Tutunnikov I, Qiang J, Ma J, Song Q, Ji Q, Zhang W, Li H, Sun F, Gong X, et al 2018 Nat. Commun. 9 5134Google Scholar

    [39]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

    [40]

    Kitano K, Ishii N, Itatani J 2011 Phys. Rev. A 84 053408Google Scholar

    [41]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [42]

    Egodapitiya K N, Li S, Jones R R 2014 Phys. Rev. Lett. 112 103002Google Scholar

    [43]

    Damari R, Kallush S, Fleischer S 2016 Phys. Rev. Lett. 117 103001Google Scholar

    [44]

    Zhang S, Lu C, Jia T, Wang Z, Sun Z 2011 Phys. Rev. A 83 043410Google Scholar

    [45]

    Yun H, Kim H T, Kim C M, Nam C H, Lee J 2011 Phys. Rev. A 84 065401Google Scholar

    [46]

    Spanner M, Patchkovskii S, Frumker E, Corkum P 2012 Phys. Rev. Lett. 109 113001Google Scholar

    [47]

    Qin C C, Jia G R, Zhang X Z, Liu Y F, Long J Y, Zhang B 2013 Chin. Phys. B 23 013302

    [48]

    Huang Z Y, Wang D, Lang Z, Li W K, Zhao R R, Leng Y X 2017 Chin. Phys. B 26 054209Google Scholar

    [49]

    Mun J H, Sakai H 2018 Phys. Rev. A 98 013404Google Scholar

    [50]

    Li H, Li W, Feng Y, Pan H, Zeng H 2013 Phys. Rev. A 88 013424Google Scholar

    [51]

    Cheng Q Y, Song Y Z, Meng Q T 2019 Chin. Phys. B 28 113301Google Scholar

    [52]

    Damari R, Beer A, Flaxer E, Fleischer S 2023 J. Chem. Phys. 158 014201Google Scholar

    [53]

    Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M, Itatani J 2013 Phys. Rev. A 88 061405Google Scholar

    [54]

    Kitano K, Ishii N, Kanai T, Itatani J 2014 Phys. Rev. A 90 041402Google Scholar

    [55]

    Zhang Y D, Wang S, Zhan W S, Yang J, Jing D 2017 Laser Phys. 27 056001Google Scholar

    [56]

    Xu L, Tutunnikov I, Gershnabel E, Prior Y, Averbukh I S 2020 Phys. Rev. Lett. 125 013201Google Scholar

    [57]

    Dion C M, Keller A, Atabek O 2005 Phys. Rev. A 72 023402Google Scholar

    [58]

    Salomon J, Dion C M, Turinici G 2005 J. Chem. Phys. 123 144310Google Scholar

    [59]

    Nakajima K, Abe H, Ohtsuki Y 2012 J. Phys. Chem. A 116 11219Google Scholar

    [60]

    Liao S L, Ho T S, Rabitz H, Chu S I 2013 Phys. Rev. A 87 013429Google Scholar

    [61]

    Coudert L H 2017 J. Chem. Phys. 146 024303Google Scholar

    [62]

    Coudert L 2018 J. Chem. Phys. 148 094306Google Scholar

    [63]

    Trippel S, Mullins T, Müller N L M, Kienitz J S, González-Férez R, Küpper J 2015 Phys. Rev. Lett. 114 103003Google Scholar

    [64]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102 063120Google Scholar

    [65]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [66]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130 043604Google Scholar

    [67]

    Fan L B, Shu C C 2023 J. Phys. A-Math. Theor. 56 365302Google Scholar

    [68]

    Zhang J P, Wang S, Henriksen N E 2023 Phys. Rev. A 107 033118Google Scholar

    [69]

    Fan L B, Li H J, Chen Q, Zhou H, Liu H, Shu C C 2025 Phys. Rev. A 111 033119Google Scholar

    [70]

    Hong Q Q, Dong D, Henriksen N E, Nori F, He J, Shu C C 2025 Phys. Rev. Res. 7 L012049Google Scholar

    [71]

    Werschnik J, Gross E 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R175Google Scholar

    [72]

    Yoshida M, Ohtsuki Y 2014 Phys. Rev. A 90 013415Google Scholar

    [73]

    Shu C C, Ho T S, Rabitz H 2016 Phys. Rev. A 93 053418Google Scholar

    [74]

    Shu C C, Dong D, Petersen I R, Henriksen N E 2017 Phys. Rev. A 95 033809Google Scholar

    [75]

    Guo Y, Dong D, Shu C C 2018 Phys. Chem. Chem. Phys. 20 9498Google Scholar

    [76]

    Yu H, Ho T S, Rabitz H 2018 Phys. Chem. Chem. Phys. 20 13008Google Scholar

    [77]

    Ansel Q, Dionis E, Arrouas F, Peaudecerf B, Guérin S, Guéry-Odelin D, Sugny D 2024 J. Phys. B: At. Mol. Opt. Phys. 57 133001Google Scholar

    [78]

    Shtoff A, Rérat M, Gusarov S 2001 Eur. Phys. J. D 15 199Google Scholar

  • [1] 蓝湾, 迟晨阳, 郭迎春, 杨玉军, 王兵兵. 外加静电场下CO高次谐波谱. 物理学报, doi: 10.7498/aps.72.20230560
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, doi: 10.7498/aps.72.20230900
    [3] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, doi: 10.7498/aps.70.20210334
    [4] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制. 物理学报, doi: 10.7498/aps.70.20210517
    [5] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, doi: 10.7498/aps.66.156801
    [6] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法. 物理学报, doi: 10.7498/aps.66.050301
    [7] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, doi: 10.7498/aps.65.157901
    [8] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, doi: 10.7498/aps.65.047902
    [9] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, doi: 10.7498/aps.65.156101
    [10] 任新成, 朱小敏, 刘鹏. 大地土壤表面与浅埋多目标宽带复合电磁散射研究. 物理学报, doi: 10.7498/aps.65.204101
    [11] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配. 物理学报, doi: 10.7498/aps.63.128802
    [12] 曹小群. 基于高斯伪谱方法的混沌系统最优控制. 物理学报, doi: 10.7498/aps.62.230505
    [13] 武利猛, 倪明康. 奇异摄动最优控制问题中的内部层解. 物理学报, doi: 10.7498/aps.61.080203
    [14] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制. 物理学报, doi: 10.7498/aps.59.2250
    [15] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型. 物理学报, doi: 10.7498/aps.59.4837
    [16] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, doi: 10.7498/aps.59.1681
    [17] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究. 物理学报, doi: 10.7498/aps.58.2364
    [18] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, doi: 10.7498/aps.57.4099
    [19] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, doi: 10.7498/aps.56.2845
    [20] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究. 物理学报, doi: 10.7498/aps.51.928
计量
  • 文章访问数:  342
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-07-04
  • 上网日期:  2025-08-08

/

返回文章
返回