搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限域通道内溶液的电渗流滑移减阻机制

吴吉成 卢艳

引用本文:
Citation:

限域通道内溶液的电渗流滑移减阻机制

吴吉成, 卢艳

Electroosmotic slip reduction mechanism of solutions in domain-limited channels

WU Jicheng, LU Yan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 电渗流通过改变流固界面的双电层效应, 使流体在通道内产生高剪切率从而驱动界面处产生大的滑移速度. 本文采用分子动力学模拟构建电渗流纳米通道模型, 研究了石墨烯带电壁面纳米通道内流体流动特性与壁面滑移减阻特性. 结果表明, 电渗流改变了双电层结构增加其扩散层的可移动性; 同时在电场作用下扩散层的离子定向迁移, 通过黏性作用带动整体流动, 增大了流体的流动性能. 引入离子后, Na+在壁面处吸附削弱流体与壁面之间的吸附力, 从而提升流体在限域空间的驱动力, 增大离子溶液滑移长度和流速. 最终提出了一种通过调控石墨烯非对称壁面电荷实现通道内溶液超快运输的方法, 成功地实现了石墨烯通道内溶液电渗流的滑移减阻效果. 为纳米限域空间内微流体的快速节能输运提供了理论依据.
    Electroosmosis drives a large slip velocity at the interface by altering the electrokinetic double layer effect at the fluid-solid interface, thereby generating high shear rates within the channel. In this paper, molecular dynamics simulations are used to construct an electroosmotic flow nanochannel model, and the fluid flow characteristics and wall slip reduction properties within graphene charged-wall nanochannels are investigated. The results show that the electroosmotic flow changes the structure of the bilayer to increase the mobility of its diffusion layer, and at the same time, the ions in the diffusion layer under the action of the applied electric field undergo directional migration and drive the overall fluid flow through the viscous effect, which enhances the mobility performance. After the introduction of ions, Na+ is adsorbed at the wall surface, which weakens the adsorption force between the fluid and the wall surface and enhances the driving force of the fluid in the confined domain space, thus increasing the slip length and flow rate. Finally, by modulating the charge size on the upper and lower wall surfaces, asymmetric channel wall charges are formed. The electric field gradient superimposed on the applied electric field further enhances the driving force of ions, changes the distribution of the of Na+ adsorption layer and the migration behavior of Cl, thereby increasing the transport of the solution in the channel. Therefore, in this paper, a method is proposed to realize the ultrafast transport of solution in the channel by modulating the asymmetric wall charge of graphene, successfully achieving the slip reduction effect of the electroosmotic flow of solution in the graphene channel. A theoretical basis is laid for the fast and energy-saving transportation of microfluidics in the nano-limited space.
  • 图 1  纳米通道流动模型示意图 (a) 石墨烯纳米通道内水流动模型; (b) 石墨烯纳米通道内离子溶液的流动模型(上下灰色层为三层石墨烯壁面, 中间蓝色区域为水溶液)

    Fig. 1.  Schematic diagram of the nanochannel flow model: (a) The water flow model inside the graphene nano-channel; (b) the flow model of the ionic solution inside the graphene nano-channel. The upper and lower gray layers are the three-layer graphene wall, and the middle blue region is the water solution.

    图 2  石墨烯纳米通道内壁面电荷为0.10 e下不同外加电场强度通道内水分子密度分布图

    Fig. 2.  Density distribution of water molecules in the channel for different applied electric field strengths at a wall charge of 0.10 e inside the graphene nano-channel.

    图 3  不同电压下密度曲线中上壁面(a)和下壁面(b)峰值处的局部放大图

    Fig. 3.  Localized magnification of the density profiles at the peaks of the upper (a) and lower (b) walls at different voltages.

    图 4  不同电场强度下石墨烯通道内水的流动特性分析 (a) 不同电场强度下通道内水分子归一化速度分布曲线; (b) 不同电场强度下通道内水溶液流动过程中受到的黏性阻力、范德瓦耳斯力和静电力的柱状分布; (c) 水流动过程中滑移长度的变化曲线与驱动力的柱状分布

    Fig. 4.  Characterization of water flow in graphene channel under different electric field strengths: (a) Normalized velocity distribution curves of water molecules in the channel under different electric field strengths; (b) Columnar distributions of viscous resistance, van der Waals force and electrostatic force during the flow of aqueous solution in the channel under different electric field strengths; (c) variation curves of the slip length in the flow of water with the columnar distributions of the driving force.

    图 5  电场强度为0.10 V/nm、壁面电荷为0.05 e条件下通道内水和离子溶液速度平均值归一化分布曲线

    Fig. 5.  Normalized distribution curves of the mean water and ion solution velocities in the channel at an electric field strength of 0.10 V/nm and a wall charge of 0.05 e.

    图 6  石墨烯通道内离子溶液流动过程中的水分子的密度以及离子排布 (a) 不同壁面电荷下离子溶液的密度分布; (b) 水分子在下壁面7.5 Å处密度分布峰值的局部放大图; (c) 壁面加电荷后离子溶液在流动过程中通道内离子的排布; (d) 壁面电荷为0.08 e下石墨烯通道内Na+与Cl的电荷密度曲线. (其中不同颜色的曲线代表不同电荷下的密度曲线)

    Fig. 6.  Density of water molecules during the flow of ionic solution in the graphene channel and ionic arrangement: (a) Density distribution of ionic solution at different wall charges of graphene; (b) local magnification of the peak density distribution of water molecules at 7.5 Å on the lower wall; (c) ionic arrangement of ions in the channel during the flow of ionic solution after the wall charge; (d) charge density profile of Na+ in the graphene channel at a wall charge of 0.08 e and Cl charge density curves (curves of different colors represent density profiles at different charges).

    图 7  石墨烯通道内不同壁面电荷下离子溶液流动过程中的速度、滑移以及受到的力的分析 (a) 不同石墨烯壁面电荷下离子溶液的归一化速度分布(其中不同颜色的电线代表不同电荷下离子溶液流动的速度曲线); (b) 不同壁面电荷下离子溶液流动过程中受到的范德瓦耳斯力、黏性阻力和静电力的柱状分布; (c) 不同壁面电荷下石墨烯通道内溶液的滑移量的变化曲线与溶液受到的驱动力柱状分布

    Fig. 7.  Analysis of the velocity, slip, and the force applied during the flow of ionic solutions under different wall charges in the graphene channel: (a) Normalized velocity distribution of ionic solutions under different graphene wall charges (different colored wires represent the velocity profiles of ionic solutions flowing under different charges); (b) Columnar distributions of van der Waals force, viscous resistance, and electrostatic force applied to the flow of ionic solutions under different wall charges distributions; (c) the variation curves of the slip of the solution in the graphene channel under different wall charges with the Columnar distribution of the driving force on the solution.

    图 8  不同壁面电荷差值下溶液中Na+和Cl的电荷密度分布曲线 (a), (b), (c)分别是壁面电荷差值为0.01 e, 0.05 e和0.09 e下溶液中的离子密度分布曲线(其中蓝色点线为Na+的密度曲线, 红色点线为Cl的密度曲线); (d) 不同壁面电荷差值下石墨烯上壁面吸附Na+的数量变化曲线

    Fig. 8.  Charge density distribution curves of Na+ and Cl in solution for different values of wall charge difference: (a), (b), (c) Ion density distribution curves in solution at wall charge difference values of 0.01 e, 0.05 e, and 0.09 e, respectively (the blue dotted line is the density curve of Na+ and the red dotted line is the density curve of Cl); (d) variation curves of the amount of adsorbed Na+ on the graphene on the walls at different values of wall charge difference.

    图 9  石墨烯通道内不同壁面电荷差值下离子溶液流动过程中的速度对比 (a) 石墨烯通道不同壁面电荷差值下离子溶液在纳米通道内的归一化速度变化曲线; (b) X方向0.10 V/nm的电场作用下, 壁面电荷差值为0.05 e、壁面电荷0.05 e、壁面电荷0.09 e的速度分布曲线对比

    Fig. 9.  Comparison of velocities during the flow of ionic solutions in graphene channels with different wall charge differences: (a) Normalized velocity change curves of ionic solutions in nano-channels with different wall charge differences in graphene channels; (b) comparison of velocity distribution curves with 0.05 e, 0.05 e, and 0.09 e under the action of the electric field of 0.10 V/nm in the X direction.

    图 10  石墨烯通道内不同壁面电荷差值下离子溶液流动过程中的受力以及滑移分析 (a) 不同壁面电荷差值下溶液流动过程中受到的范德瓦耳斯力、黏性阻力和静电力的柱状分布; (b) 不同壁面电荷差值下溶液的滑移曲线和溶液受到驱动力的柱状分布

    Fig. 10.  Force as well as slip analysis during the flow of ionic solutions in graphene channels with different wall charge differences: (a) Columnar distributions of van der Waals force, viscous drag force and electrostatic force applied to the flow of solutions with different wall charge differences; (b) slip profiles of solutions with different wall charge differences and columnar distributions of driving force applied to the solutions.

    表 1  原子对之间的相互作用参数

    Table 1.  Interaction parameters between atom pairs.

    原子类型(i) 原子类型(j) σ ε/meV 电荷q/e
    O (H2O) O (H2O) 3.154 6.72 –1.04
    H (H2O) H (H2O) 0.00 0.00 0.52
    Na+ (NaCl) Na+ (NaCl) 2.575 0.648 1.00
    Cl (NaCl) Cl (NaCl) 4.448 4.607 –1.00
    C (石墨烯) C (石墨烯) 3.40 3.73 –0.01 — –0.10
    下载: 导出CSV
  • [1]

    Schutzius T M, Jung S, Maitra T, Graeber G, Poulikakos D 2015 Nature 527 82Google Scholar

    [2]

    Liu Q, Xu B 2015 Langmuir 31 9070Google Scholar

    [3]

    Zhang Z, Wang Y, Ding M, Mao D, Chen M, Han Y, Xue X 2023 J. Mol. Liq. 380 121698Google Scholar

    [4]

    Song Y Y, Liu Y, Jiang H B, Li S Y, Kaya C, Stegmaier T, Han Z W, Ren L Q 2017 Sci. Rep. 7 12056Google Scholar

    [5]

    Fabio P, Wenjie S 2018 Nat. Nanotechnol. 13 633Google Scholar

    [6]

    Zhang Y S, Qi Z Y, Ding M M, Li M L, Shi T F 2024 Chin. J. Polym. Sci. 42 2048Google Scholar

    [7]

    Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016 Phys. Chem. Chem. Phys. 18 1886Google Scholar

    [8]

    Giovambattista N, Debenedetti P G, Rossky P J 2007 J. Phys. Chem. B. 111 9581Google Scholar

    [9]

    梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿 2019 物理学报 68 094701Google Scholar

    Mei T, Chen Z X, Yang L, Wang K, Miao R C 2019 Acta Phys. Sin. 68 094701Google Scholar

    [10]

    Basu M, Joshi V P, Das S, DasGupta S 2021 J. Electrostat. 109 103541Google Scholar

    [11]

    杨慧慧, 高峰, 戴明金, 胡平安 2017 物理学报 66 216804Google Scholar

    Yang H H, Gao F, Dai M J, Hu P A 2017 Acta Phys. Sin. 66 216804Google Scholar

    [12]

    Celebi A T, Barisik M, Beskok A 2017 J. Chem. Phys. 147 164311Google Scholar

    [13]

    Celebi A T, Barisik M, Beskok A 2018 Microfluid Nanofluid. 22 7Google Scholar

    [14]

    Ghorbanian J, Beskok A 2016 Microfluid. Nanofluid. 20 121Google Scholar

    [15]

    Ghorbanian J, Celebi A T, Beskok A 2016 J. Chem. Phys. 145 184109Google Scholar

    [16]

    张程宾, 许兆林, 陈永平 2014 物理学报 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [17]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [18]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [19]

    Patra M, Karttunen M 2004 J. Comput. Chem. 25 678Google Scholar

    [20]

    Bongrand P 2018 Physical Basis of Cell-Cell Adhesion. 37 283

    [21]

    Hoover W G 1985 Phys. Rev. A. 31 1695Google Scholar

    [22]

    Binder K, Horbach J, Kob W, Paul W, Varnik F 2004 J. Phys. Condens. Matter. 16 S429Google Scholar

    [23]

    Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016 Phys. Chem. Chem. Phys. 18 1886Google Scholar

    [24]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [25]

    Yeh L H, Xue S, Joo S W, Qian S, Hsu J P 2012 J. Phys. Chem. C. 116 4209Google Scholar

    [26]

    Snapp P, Kim J M, Cho C, Leem J, Haque M F, Nam S 2020 NPG Asia Mater 12 22Google Scholar

    [27]

    Telles I M, Bombardelli R K, dos Santos A P, Levin Y 2021 J. Mol. Liq. 336 116263Google Scholar

    [28]

    Huang S, Rahmani A M, Singletary T, Colosqui C E 2020 Colliods Surf. , A 603 125100Google Scholar

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, doi: 10.7498/aps.73.20240128
    [2] 于欣如, 崔继峰, 陈小刚, 慕江勇, 乔煜然. 平行板微通道中一类不可压缩微极性流体在高Zeta势下的时间周期电渗流. 物理学报, doi: 10.7498/aps.73.20240591
    [3] 慕江勇, 崔继峰, 陈小刚, 赵毅康, 田祎琳, 于欣如, 袁满玉. 微通道中一类生物流体在高Zeta势下的电渗流及传热特性. 物理学报, doi: 10.7498/aps.73.20231685
    [4] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, doi: 10.7498/aps.71.20212171
    [5] 钟婷婷, 吴梦昊. 二维层间滑移铁电研究进展. 物理学报, doi: 10.7498/aps.69.20201432
    [6] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, doi: 10.7498/aps.67.20181539
    [7] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动. 物理学报, doi: 10.7498/aps.65.034702
    [8] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, doi: 10.7498/aps.64.224702
    [9] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, doi: 10.7498/aps.64.174702
    [10] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, doi: 10.7498/aps.64.094703
    [11] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, doi: 10.7498/aps.64.077302
    [12] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.63.054701
    [13] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响. 物理学报, doi: 10.7498/aps.62.055202
    [14] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, doi: 10.7498/aps.62.200702
    [15] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, doi: 10.7498/aps.62.144702
    [16] 长龙, 菅永军. 平行板微管道间Maxwell流体的高Zeta势周期电渗流动. 物理学报, doi: 10.7498/aps.61.124702
    [17] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, doi: 10.7498/aps.60.020702
    [18] 姜洪源, 任玉坤, 陶冶. 微系统中转矩及电渗流作用下的微粒子电动旋转操控. 物理学报, doi: 10.7498/aps.60.010701
    [19] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, doi: 10.7498/aps.59.6786
    [20] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用. 物理学报, doi: 10.7498/aps.54.5937
计量
  • 文章访问数:  341
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-04
  • 修回日期:  2025-06-14
  • 上网日期:  2025-07-24

/

返回文章
返回