搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络方法研究β衰变释放粒子的平均能量数据

魏凯文 尚天帅 田榕赫 杨东 李春娟 陈军 李剑 黄小龙 朱佳丽

引用本文:
Citation:

基于神经网络方法研究β衰变释放粒子的平均能量数据

魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽

Research on average energy data of β decay released nuclei based on neural networks

WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 核素β-衰变释放的β粒子与γ射线平均能量是计算反应堆衰变热的核心参数, 对核设施安全与工程应用至关重要. 然而, 许多核素的实验数据匮乏, 现有理论模型精度难以满足需求. 本文基于ENSDF数据库中543个实验数据准确的β衰变核素(选自1136个β衰变核素), 采用神经网络方法对核素衰变发射的β粒子、γ射线及中微子的平均能量进行预测, 对比了三种特征组(分别含特殊特征值$T_{1/2}$、$\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$, $\dfrac{1}{3}Q$)的模型性能. 结果表明: 相比特征组含$T_{1/2}$以及$\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$的模型, 特征组含$\dfrac{1}{3}Q$的模型综合表现最佳, 其β粒子与中微子预测误差分别为28.11%/56.9%和35.33%/37.76%, 并且利用该特征组训练的机器学习模型成功补充了裂变产物区(质量数66–172)291个核素的缺失数据. 核素图对比显示, 神经网络对规律性较强的β粒子及中微子能量预测与实验吻合较好, 但对γ射线(训练误差76.9%)以及奇奇核、幻数附近核素的预测偏差显著. 本文证实经验特征值$\dfrac{1}{3}Q$可有效提升模型性能, 同时揭示了数据规律性与模型泛化能力的关联, 为后续融合物理机理优化机器学习模型提供了依据.
    The average β energy data and average γ energy data of the β--decay released nuclei play an important role in many fields of nuclear technology and scientific research, such as the decay heat and antineutrino spectrum calculation for different kinds of reactors. However, the reliable experimental measurements of the average energies for many nuclei are lacking, and the theoretical calculation needs to be improved to meet the requirements for accuracy in the technical applications.In this study, the average β, γ and neutrino energies of the β-decay released nuclei are investigated by the neural network method based on the newly evaluated experimental data of 543 nuclei that are selected from a total of 1136 β-decay nuclei. In the neural network approach, three different characteristic groups are used for model training. Each characteristic group contains a characteristic value (one of the $T_{1/2}$, $\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$, and $\dfrac{1}{3}Q$), along with five identical characteristic values (Z, N, parity of Z, parity of N, and $\Delta Z$).The three characteristic values are selected based on the physical mechanism below. 1) The average energy is obviously related to Q value and approximately taken as $\dfrac{1}{3}Q$ in the reactor industry. Therefore, the $\dfrac{1}{3}Q$ is chosen as one characteristic value. 2) The half-live is related to the Q value of β--decay, and $T_{1/2}$ is considered. 3) According to the Sargent’s law, $\left( \dfrac{1}{T_{1/2}} \right)^{1/5} \propto Q$, a more accurate $\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$ value is selected.As a result, for the characteristic group of $T_{1/2}$, the training results for all three types of average energies are unsatisfactory. For the other groups, the relative errors of the average β energy data, are 19.32% and 28.11% for $\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$ and $\dfrac{1}{3}Q$ feature groups in the training set, and 82% and 56.9% in the validation set; the relative errors of the average γ energy are 28.9% and 76.9% for $\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$ and $\dfrac{1}{3}Q$ characteristic groups, respectively, and they are both >100% in the validation set; for the average neutrino energy, the relative errors in the training set are 27.82% and 35.33% for $\left( \dfrac{1}{T_{1/2}} \right)^{1/5}$ and $\dfrac{1}{3}Q$ feature group, and 76.32% and 37.76% in the validation set, respectively.Considering the accuracy comparison of the three groups, the $\dfrac{1}{3}Q$ characteristic group is chosen to predict the average energy data of nuclei in the fission product region (mass numbers range from 66 to 172), which lacks reliable experimental data. As a result, the average energy data with predicted values for 291 nuclei are supplemented. Besides, a comparison is made between the calculated data and the evaluated experimental data through the nuclide chart. It is found that the neural network accurately predicts the experimental data for the average β and neutrino energies which exhibit relatively strong regularity. However, the average β energy significantly deviates from the prediction of the average γ energy (relative error in the training set is 76.9%). Large deviation also emerges in the odd-odd nuclei and nuclei near magic numbers. This study confirms that integrating empirical relationships and physical principles can effectively improve the performance of the neural network, and simultaneously reveals the relationship between data regularity and model generalization capability. These findings provide a basis for using physical mechanisms to optimize machine learning models in the future.
  • 图 1  实验(543)与神经网络(834)所得β粒子平均能量系统变化的核素图

    Fig. 1.  systematic variation of average β energy values from experiment (543) and Neural Network (834) in the nuclear chart.

    图 2  实验(543)与神经网络(834)所得γ射线平均能量系统变化的核素图

    Fig. 2.  systematic variation of average γ energy values from experiment (543) and Neural Network (834) in the nuclear chart.

    图 3  实验(543)与神经网络(834)所得中微子平均能量系统变化的核素图

    Fig. 3.  systematic variation of average neutrino energy values from experiment (543) and Neural Network (834) in the nuclear chart.

    表 1  神经网络的超参数集

    Table 1.  The hyper parameters of Neural Network

    层数 名称 神经元数目 激活函数
    0 输入层 6
    1 隐藏层 60 Tanh
    2 隐藏层 60 Tanh
    3 隐藏层 60 Tanh
    4 隐藏层 60 Tanh
    5 隐藏层 60 Tanh
    6 输出层 1
    下载: 导出CSV

    表 2  其它超参数

    Table 2.  Other hyper parameters

    其它超参数 值和特征
    批大小 16
    损失函数 均方差
    优化器 RMSprop
    学习速率 $ 1\times10^{-5} $
    下载: 导出CSV

    表 3  平均能量计算结果

    Table 3.  The calculation results of average energies

    平均能量类型 误差类型 特征组1 特征组2 特征组3
    β粒子平均能 训练误差 $> 100{\text{%}} $ 19.32% 28.11%
    验证误差 $> 100{\text{%}} $ 82% 56.9%
    γ射线平均能 训练误差 $> 100{\text{%}} $ 28.9% 76.9%
    验证误差 $> 100{\text{%}} $ $> 100{\text{%}} $ $> 100{\text{%}} $
    中微子平均能 训练误差 $> 100{\text{%}} $ 27.82% 35.33%
    验证误差 $> 100{\text{%}} $ 76.32% 37.76%
    下载: 导出CSV
  • [1]

    Nichols A 2015 J. Nucl. Sci. Technol. 52 17Google Scholar

    [2]

    Rana M A 2008 Nucl. Sci. Tech. 19 117Google Scholar

    [3]

    Song Q F, Zhu L, Guo H, Su J 2023 Nucl. Sci. Tech. 34 32Google Scholar

    [4]

    Xiao K, Li P C, Wang Y J, Liu F H, Li Q F 2023 Nucl. Sci. Tech. 34 62Google Scholar

    [5]

    Algora A, Tain J, Rubio B, Fallot M, Gelletly W 2021 Eur. Phys. J. A 57 85Google Scholar

    [6]

    Greenwood R, Helmer R, Putnam M, Watts K 1997 Nucl. Instrum. Methods Phys. Res. A 390 95Google Scholar

    [7]

    Valencia E, Tain J, Algora A, Agramunt J, Estevez E, Jordan M, Rubio B, Rice S, Regan P, Gelletly W, et al 2017 Phys. Rev. C 95 024320Google Scholar

    [8]

    Tengblad O, Aleklett K, Von Dincklage R, Lund E, Nyman G, Rudstam G 1989 Nucl. Phys. A 503 136Google Scholar

    [9]

    Nichols A, Dimitriou P, Algora A, Fallot M, Giot L, Kondev F, Yoshida T, Karny M, Mukherjee G, Rasco B, et al 2023 Eur. Phys. J. A 59 78Google Scholar

    [10]

    Yoshida T, Nakasima R 1981 J. Nucl. Sci. Technol. 18 393Google Scholar

    [11]

    Fang J, Zhang X, Shi M, Niu Z 2025 Eur. Phys. J. A 61 1Google Scholar

    [12]

    Fang J, Chen J, Niu Z 2022 Phys. Rev. C 106 054318Google Scholar

    [13]

    Azevedo M, Ferreira R, Dimarco A, Barbero C A, Samana A R, Possidonio D 2020 Brazil. J. Phys. 50 57Google Scholar

    [14]

    Nakata H, Tachibana T, Yamada M 1995 Nucl. Phys. A 594 27Google Scholar

    [15]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521Google Scholar

    [16]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641Google Scholar

    [17]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521Google Scholar

    [18]

    Borzov I 2006 Nucl. Phys. A 777 645Google Scholar

    [19]

    Kumar V, Srivastava P C 2023 Eur. Phys. J. A 59 237Google Scholar

    [20]

    Ni D, Ren Z 2012 J. Phys. G 39 125105Google Scholar

    [21]

    Nabi J U, Ishfaq M 2020 New Astron. 78 101356Google Scholar

    [22]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60 014302

    [23]

    Minato F, Bai C 2013 Phys. Rev. Lett. 110 122501Google Scholar

    [24]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [25]

    Möller P, Randrup J 1990 Nucl. Phys. A 514 1Google Scholar

    [26]

    Audi G, Bersillon O, Blachot J, Wapstra A 2003 Nucl. Phys. A 729 3Google Scholar

    [27]

    Moller P, Nix J, Kratz K 1997 At. Data Nucl. Data Tables 66 131Ä211

    [28]

    Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67 055802

    [29]

    Soloviev V G 2020 Theory of Atomic Nuclei, Quasi-particle and Phonons. (Boca Raton, FL: CRC Press) p226

    [30]

    Kuz-Min V, Soloviev V 1988 Nucl. Phys. A 486 118Google Scholar

    [31]

    Soloviev V, Sushkov A 1989 Phys. Lett. B 216 259Google Scholar

    [32]

    Luo D, Clark B K 2019 Phys. Rev. Lett. 122 226401Google Scholar

    [33]

    Yoshida S 2020 Phys. Rev. C 102 024305

    [34]

    Chen Y, Wu X 2024 Int. J. Mod. Phys. E 33 2450012

    [35]

    Hizawa N, Hagino K, Yoshida K 2023 Phys. Rev. C 108 034311Google Scholar

    [36]

    Wu X, Ren Z, Zhao P 2022 Phys. Rev. C 105 L031303Google Scholar

    [37]

    Yang Z X, Fan X H, Li Z P, Liang H 2023 Phys. Lett. B 840 137870Google Scholar

    [38]

    Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G 43 114002Google Scholar

    [39]

    Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102 054323Google Scholar

    [40]

    Xian Z Y, Ya Y, An R 2025 Phys. Lett. B 868 139662Google Scholar

    [41]

    Jiao B B 2024 Int. J. Mod. Phys. E 33 2450019

    [42]

    Zhang X, He H, Qu G, Liu X, Zheng H, Lin W, Han J, Ren P, Wada R 2024 Phys. Rev. C 110 014316Google Scholar

    [43]

    Zhang X, Liu X, Zheng H, Lin W, Wada R, Han J, Ma C, Qiao C, Peng D, Huang Y, et al 2025 IEEE Trans. Nucl. Sci. 72 795Google Scholar

    [44]

    Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G 46 115109Google Scholar

    [45]

    Freitas P S, Clark J W 2019 arXiv preprint arXiv: 1910.12345 [nucl-th]

    [46]

    Ma N N, Bao X J, Zhang H F 2021 Chin. Phys. C 45 024105Google Scholar

    [47]

    Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46 024101Google Scholar

    [48]

    Li W, Zhang X, Niu Y, Niu Z 2023 J. Phys. G 51 015103

    [49]

    Luo J, Xu Y, Li X, Wang J, Zhang Y, Deng J, Zhang F, Ma N 2025 Phys. Rev. C 111 034330Google Scholar

    [50]

    Akkoyun S 2020 Nucl. Instrum. Methods Phys. Res. B 462 51Google Scholar

    [51]

    Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104Google Scholar

    [52]

    Sun Q K, Zhang Y, Hao Z R, Wang H W, Fan G T, Xu H H, Liu L X, Jin S, Yang Y X, Chen K J, et al 2025 Nucl. Sci. Tech. 36 52Google Scholar

    [53]

    Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109 044616Google Scholar

    [54]

    Özdoğan H, Üncü Y A, Şekerci M, Kaplan A 2024 Appl. Radiat. Isot. 204 111115Google Scholar

    [55]

    Lay D, Flynn E, Giuliani S A, Nazarewicz W, Neufcourt L 2024 Phys. Rev. C 109 044305Google Scholar

    [56]

    郭粤颖, 唐湘琪, 刘辉鑫, 吴鑫辉 2025 核技术 48 050003Google Scholar

    Guo Y Y, Tang X Q, Liu H X, Wu X H 2025 Nucl. Tech. 48 050003Google Scholar

    [57]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96 044308Google Scholar

    [58]

    Neufcourt L, Cao Y, Nazarewicz W, Viens F 2018 Phys. Rev. C 98 034318Google Scholar

    [59]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97 014306

    [60]

    Neufcourt L, Cao Y, Nazarewicz W, Olsen E, Viens F 2019 Phys. Rev. Lett. 122 062502Google Scholar

    [61]

    Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101 014319Google Scholar

    [62]

    Lu Y, Shang T, Du P, Li J, Liang H, Niu Z 2025 Phys. Rev. C 111 014325Google Scholar

    [63]

    Zeng L X, Yin Y Y, Dong X X, Geng L S 2024 Phys. Rev. C 109 034318Google Scholar

    [64]

    Yiu T C, Liang H, Lee J 2024 Chin. Phys. C 48 024102Google Scholar

    [65]

    Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109 064322Google Scholar

    [66]

    谭凯中, 高琬晴, 刘健 2025 核技术 48 050010Google Scholar

    Tan K Z, Gao W Q, Liu J 2025 Nucl. Tech. 48 050010Google Scholar

    [67]

    ENSDF: Evaluated Nuclear Structure Data File, National Nuclear Data Center https://www.nndc.bnl.gov/ensdf/ [2025-07-07]

    [68]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [69]

    Sargent B 1933 Proc. R. Soc. A 139 659

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [2] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [3] 刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东. 卷积神经网络辅助无机晶体弹性性质预测. 物理学报, doi: 10.7498/aps.74.20250127
    [4] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化. 物理学报, doi: 10.7498/aps.74.20241624
    [5] 陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军. 基于神经网络方法研究超重核的稳定性和衰变性质. 物理学报, doi: 10.7498/aps.74.20250720
    [6] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究. 物理学报, doi: 10.7498/aps.74.20250381
    [7] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [8] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240156
    [9] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, doi: 10.7498/aps.73.20231661
    [10] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [11] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [12] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [13] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [14] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [15] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [16] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, doi: 10.7498/aps.70.20210711
    [17] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势. 物理学报, doi: 10.7498/aps.69.20200690
    [18] 张弦, 王宏力. 具有选择与遗忘机制的极端学习机在时间序列预测中的应用. 物理学报, doi: 10.7498/aps.60.080504
    [19] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割. 物理学报, doi: 10.7498/aps.56.4353
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, doi: 10.7498/aps.50.674
计量
  • 文章访问数:  616
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-07-07
  • 上网日期:  2025-07-18

/

返回文章
返回