搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传统光学模型的改进及其在重离子碰撞反应中的应用

梁春恬 孙小军 黄俊曦 杨昊瑜 李小华 蔡崇海

引用本文:
Citation:

传统光学模型的改进及其在重离子碰撞反应中的应用

梁春恬, 孙小军, 黄俊曦, 杨昊瑜, 李小华, 蔡崇海

Improvements to the Traditional Optical Model and The Applications in Heavy-Ion Collision Reactions

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文针对重离子碰撞中弹核与靶核质量相近体系的相互作用问题,提出改进型光学模型APOMHI。该模型突破传统框架中仅侧重靶核贡献的局限,通过对称化处理弹核与靶核的势场影响,在Woods-Saxon型光学势场构建中,弹靶核的扩散宽度与半径参数采用对等形式,确保两者贡献的等价性。同时,角动量耦合方式也相应由L-S耦合替代了j-j耦合。将改进后的光学模型应用于以18O作为弹核的系列重离子碰撞反应,通过拟合弹性散射角分布与复合核吸收截面数据,得到了一组普适唯象光学势,经比较,理论结果与现有实验数据大体相符。
    To describe the projectile-target interaction in heavy-ion collision, this paper improves the traditional optical model and establishes a corresponding optical model for heavy-ion collisions. The program APOMHI was developed accordingly. In heavy-ion collisions, the masses of the projectile and target nuclei are comparable. Therefore, the projectile and target nuclei must be treated equally. The potential field for their relative motion must arise from an equivalent contribution by both nuclei, not solely from the target nucleus. Consequently, the angular momentum coupling scheme must employL-S coupling, not j-j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between |i- I| and i + I). This system spin S then couples with the orbital angular momentum L of the relative motion to form the total angular momentum J. Thus, the radial wave function UlSJ (r) involves three quantum numbers: l, S, and J, in contrast to the traditional optical model which involves only l and j. Furthermore, since the projectile and target masses are similar, the form of the optical model potential is symmetrized with respect to the projectile and target (see Eqs. (1)-(10) in the Theoretical Basis section). The projectile and target nuclei are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. Using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. As an example, we consider the series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters was obtained by fitting experimental data. Comparisons show that the theoretical calculations generally agree well with the available experimental data. Here, we present as examples the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus). Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
  • [1]

    Feshbach H 1958Ann. Phys. 5 357

    [2]

    Pruitt C D, Escher J E, Rahman R 2023Phys. Rev. C 107 014602

    [3]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin M, Soukhovitskii E S, Talou P 2009Nucl. Data Sheets 110 3107

    [4]

    Moumene I, Bonaccorso A 2023Phys. Rev. C 108 044609

    [5]

    Pruitt C D, Escher J E, Rahman R 2023Phys. Rev. C 107 014602

    [6]

    Jeukenne J P, Lejeune A, Mahaux C 1977Phys. Rev. C 16 80

    [7]

    Jeukenne J P, Lejeune A, Mahaux C 1976Phys. Rep. 25 83

    [8]

    Bauge E, Delaroche J P, Girod M 1998Phys. Rev. C 58 1118

    [9]

    Bauge E, Delaroche J P, Girod M 2001Phys. Rev. C 63 024607

    [10]

    Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S 2015Phys. Rev. C 91 024618

    [11]

    Soukhovitskiĩ E S, Capote R, Quesada J M, Chiba S, Martyanov D S 2016Phys. Rev. C 94 064605

    [12]

    Mahaux C, Sartor R 1991Adv. Nucl. Phys. (Boston, MA:Springer US) pp1-223

    [13]

    Quesada J M, Capote R, Molina A, Lozano M 2003Phys. Rev. C 67 067601

    [14]

    Morillon B, Romain P 2007Phys. Rev. C 76 044601

    [15]

    Mueller J M, Charity R J, Shane R, Sobotka L G, Waldecker S J, Dickhoff W H, Crowell A S, Esterline J H, Fallin B, Howell C R, Westerfeldt C, Youngs M, Crowe B J, Pedroni R S 2011Phys. Rev. C 83 064605

    [16]

    Mahzoon M H, Charity R J, Dickhoff W H, Dussan H, Waldecker S J 2014Phys. Rev. Lett. 112162503

    [17]

    Atkinson M C, Dickhoff W H 2019Phys. Lett. B 798 135027

    [18]

    Zhao X, Sun W, Capote R, Capote R, Soukhovitskiĩ E S, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618

    [19]

    An H, Cai C 2006Phys. Rev. C 73 054605

    [20]

    Han Y, Shi Y, Shen Q 2006Phys. Rev. C 74 044615

    [21]

    Koning A J, Delaroche J P 2003Nucl. Phys. A 713 231

    [22]

    Li X H, Chen L W 2012Nucl. Phys. A 874 62

    [23]

    Liang C T, Li X H, Cai C H 2009J. Phys. G:Nucl. Part. Phys. 36 085104

    [24]

    Li X, Liang C, Cai C 2007Nucl. Phys. A 789 103

    [25]

    Shen Q B 2002Nucl. Sci. Eng. 141 78

    [26]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018Phys. Rev. C 98 024619.

    [27]

    Xu Y, Han Y, Liang H, Wu Z, Guo H, Cai C 2019Phys. Rev. C 99 034618

    [28]

    Xu Y, Han Y, Hu J, Liang H, Wu Z, Guo H, Cai C 2018Phys. Rev. C 97 014615

    [29]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2021Chin. Phys. C 45 114103

    [30]

    Cai C H 2024 Personal communication

    [31]

    Raynal J 1994 CEA Saclay report CEA-N-2772

    [32]

    Roth H A, Christiansson J E, Dubois J 1980Nucl. Phys. A 343 148

    [33]

    Anjos R M, Added N, Carlin N, Fante L, Figueira M C S, Matheus R, Szanto E M, Tenreiro C, Szanto A 1994Phys. Rev. C 492018

    [34]

    Rudchik A T, Shyrma Y O, Kemper K W, Rusek K, Koshchy E I, Kliczewski S, B 2011Nucl. Phys. A 8521

    [35]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985Phys. Rev. C 31 1980

    [36]

    Thomas J, Chen Y T, Hinds S, Meredith D, Olson M 1986Phys. Rev. C 331679

    [37]

    Szilner S, Haas F, Basrak Z, Freeman R M, Morsad A, Nicoli M P 2006Nucl. Phys. A 77921

    [38]

    Tabor S L, Geesaman D F, Henning W, Kovar D G, Rehm K E, Prosser F W 1978Phys. Rev. C 17 2136

    [39]

    Bernas M, Pougheon F, Roy-Stephan M, Berg G P A, Berthier B, Le J P 1980Phys. Rev. C 22 1872

    [40]

    Rascher R, Muller W F J, Lieb K P 1979Phys. Rev. C 201028

    [41]

    Eisen Y, Tserruya I, Eyal Y, Fraenkel Z, Hillman M 1977Nucl. Phys. A 291 459

    [42]

    Bozek E, De Castro-Rizzo D M, Cavallaro S, Delaunay B, Delaunay J, Dumont H, D'onofrio A, Saint-Laurent M G, Sperduto L, Terrasi F 1986Nucl. Phys. A 451171

    [43]

    Borges A M, Silva C P, Pereira D, Chamon L C, Rossi E S, 1992Phys. Rev. C 46 2360

    [44]

    Silva C P, Pereira D, Chamon L C, Rossi E S 1997Phys. Rev. C 553155

    [45]

    Rossi E S, Pereira D, Chamon L C, Silva C P, Alvarez M A G, Gas L R 2002Nucl. Phys. A 707 325

    [46]

    Alves J J S, Gomes P R S, Lubian J, Chamon L C, Pereira D, Anjos R M 2005Nucl. Phys. A 748 59

    [47]

    Rehm K E, Koerner H J, Richter M, Rother H P, Schiffer J P, Spieler H 1975Phys. Rev. C 12 1945

    [48]

    Chamon L C, Pereira D, Rossi E S, Silva C P, Razeto G R, Borges A M, Gomes L C, Sala O 1992Phys. Lett. B 275 29

    [49]

    Salem-Vasconcelos S, Takagui E M, Bechara M J, Koide K, Dietzsch O, Baur A 1994Phys. Rev. C 50 927

    [50]

    Jia H M, Lin C J, Xu X X, Zhang H Q, Liu Z H, Yang L, Zhang S T, Bao P F, Sun L J 2012Phys. Rev. C 86 044621

    [51]

    Jha V, Roy B J, Chatterjee A, Machner H 2004Eur. Phys. J. A 19 347

    [52]

    Benjelloun M, Galster W, Vervier J 1993Nucl. Phys. A 560 715

    [53]

    Bohlen H G, Hildenbrand K D, Gobbi A, Kubo K I 1975Z. Phys. A 273211

    [54]

    Robertson B C, Sample J T, Goosman D R, Nagtani K, Jones K W 1971Phys. Rev. C 4 2176

    [55]

    Broda R, Ishihara M, Herskind B, Oeschler H, Ogaza S, Ryde H 1975Nucl. Phys. A 248 356

    [56]

    Hinde D J, Charity R J, Foote G S, Leigh J R, Newton J O, Ogaza S, Chattejee A 1986Nucl. Phys. A 452 550

    [57]

    Charity R J, Leigh J R, Bokhorst J J M, Chatterjee A, Foote G S, Hinde D J, Newton J O, Ogaza S, Ward D 1986Nucl. Phys. A 457 441

    [58]

    Sahu P K, Choudhury R K, Biswas D C, Nayak B K 2001Phys. Rev. C 64 014609

    [59]

    Plicht J, Britt H C, Fowler M M, Fraenkel Z, Gavron A, Wilhelmy J B 1983Phys. Rev. C 28 2022

    [60]

    Laveen P V, Prasad E, Madhavan N, Pal S, Sadhukhan J, Nath S, Gehlot J, Jhingan A, Varier K M, Thomas R G 2015J. Phys. G 42 95105

    [61]

    Yanez R, Loveland W, Barrett J S, Yao L 2013Phys. Rev. C 88 14606

    [62]

    Appannababu S, Mukherjee S, Singh N L, Rath P K, Kumar G K 2009Phys. Rev. C 80 24603

    [63]

    Vulgaris E, Grodzins L, Steadman S G, Ledoux R 1986Phys. Rev. C 33 2017

    [64]

    Rudchik A A, Rudchik A T, Kliczewski S, Koshchyc E I, Ponkratenko O A, 2007Nucl. Phys. A 785293

    [65]

    Heusch B, Beck C, Coffin J P, Engelstein P, Freeman R M, Guillaume G, Haas F, Wagner P 1982Phys. Rev. C 26 542

    [66]

    Beck C, Haas F, Freeman R M, Heusch B, Coffin J P, Guillaume G, Rami F, Wagner P 1985Nucl. Phys. A 442 320

    [67]

    Kovar D G, Geesaman D F, Braid T H, Eisen Y, Henning W, Ophel T R, Paul M, Rehm K E, Sanders S J 1979Phys. Rev. C 20 1305

    [68]

    Sperr P, Braid T H, Eisen Y, Kovar D G, Prosser F W, Schiffer J P, Tabor S L, Vigdor S 1976Phys. Rev. Lett. 37 321

    [69]

    Steinbach T K, Vadas J, Schmidt J, Haycraft C, Hudan S, deSouza R T 2014Phys. Rev. C 90 41603

    [70]

    Eyal Y, Beckerman M, Chechik R, Fraenkel Z, Stocker H 1976Phys. Rev. C 131527

    [71]

    Szilner S, Nicoli M P, Basrak Z, Freeman R M, Haas F, Morsad A 2001Phys. Rev. C 64064614

    [72]

    Al-Abdullah T, Carstoiu F, Gagliardi C A 2014Phys. Rev. C 89 064602

    [73]

    Rudchik A T, Shyrma Y O, Kemper K W, Piasecki E, Romanyshyna G P, Stepanenko Y M, Strojek I, Sakuta S B, Budzanowski A, Głowacka L, Skwirczyńska I, Siudak R, Choiński J, Szczurek A 2011Eur. Phys. J. A 47 1

    [74]

    Deb N K, Kalita K, Rashid H A, Das A, Nath S, Gehlot J, Madhavan N, Biswas R, Sahoo R N, Giri P K, Parihari A, Rai N K, Biswas S, Mahato A, Roy B J 2022Phys. Rev. C 105 054608

    [75]

    Wong C Y 1973Phys. Rev. Lett. 31 766

    [76]

    Wang L, Zhao K, Tian J L 2013Nucl. Phys. Rev. 30 289

    [77]

    Chen J B, Yang Y Y, Wang J S, Wang Q, Jin S L, Ma P, Ma J B, Huang M R, Han J L, Bai Z, Hu Q, Jin L, Li R, Zhao M H 2014Nucl. Phys. Rev. 31 53

    [78]

    Xu Y L, Han Y L, Su X W, Sun X J, Liang H Y, Guo H R, Cai C H 2020Chin. Phys. C 44 124103

    [79]

    Zamrun F M, Hagino K 2008Phys. Rev. C 77 014606

    [80]

    Xu Y L, Han Y L, Liang H Y, Wu Z D, Guo H R, Cai C H 2020Chin. Phys. C 44 034101

    [81]

    Beck C, Keeley N, Diaz-Torres A 2007Phys. Rev. C 75 054605

    [82]

    Pieper S C, Macfarlane M H, Gloeckner D H, Kovar D G, Becchetti F D, Harvey B G, Hendrie D L, Homeyer H, Mahoney J, Pühlhofer F, Oertzen W, Zisman M S 1978Phys. Rev. C 18 180

    [83]

    Al-Ghamdi A H, Ibraheem A A, Hamada S 2022J. Taibah Univ. Sci. 16 1026

  • [1] 杜文青, 赵岫鸟. 208Pb的Lane自洽色散光学势. 物理学报, doi: 10.7498/aps.74.20241273
    [2] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 物理学报, doi: 10.7498/aps.65.200201
    [3] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [4] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正. 物理学报, doi: 10.7498/aps.61.202401
    [5] 鲁公儒, 李新强, 李艳敏, 苏方. 代非普适Z'模型下中性Bs介子混合的研究. 物理学报, doi: 10.7498/aps.61.241301
    [6] 林青. 线性光学实现量子普适确切态识别. 物理学报, doi: 10.7498/aps.58.5978
    [7] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律. 物理学报, doi: 10.7498/aps.57.4273
    [8] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, doi: 10.7498/aps.56.5591
    [9] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, doi: 10.7498/aps.56.6797
    [10] 任浩, 顾德炜, 潘正权, 应和平. 自对耦无序分布随机链Potts模型的临界普适性研究. 物理学报, doi: 10.7498/aps.53.265
    [11] 何茂刚, 刘志刚. 球共振声学法测量普适气体常数. 物理学报, doi: 10.7498/aps.51.1004
    [12] 邓文基. 推广的EZ模型中的普适性行为. 物理学报, doi: 10.7498/aps.51.1171
    [13] 张虎勇, 马余刚, 苏前敏, 沈文庆, 蔡翔舟, 方德清, 胡鹏云, 韩定定. 同位旋效应对中能重离子反应中轻粒子产物的影响. 物理学报, doi: 10.7498/aps.50.193
    [14] 徐晓虎, 沈 剑. 铁电超晶格的一个唯象模型. 物理学报, doi: 10.7498/aps.48.2142
    [15] 孙凤久. 算符光学中的表象变换及关联方程的普适解法. 物理学报, doi: 10.7498/aps.38.653
    [16] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析. 物理学报, doi: 10.7498/aps.37.330
    [17] 吴自玉, 汪克林, 兰慧彬, 章正刚, 冼鼎昌. 赝标介子的唯象模型(Ⅱ)——电磁形状因子. 物理学报, doi: 10.7498/aps.36.1618
    [18] 吴自玉;兰慧彬;汪克林;刘耀阳;章正刚;冼鼎昌. 赝标介子的唯象模型(I). 物理学报, doi: 10.7498/aps.36.1048
    [19] 王光瑞, 陈式刚. 一维单峰映象中高周期序列的普适常数与普适函数. 物理学报, doi: 10.7498/aps.35.58
    [20] 王光瑞, 张淑誉, 郝柏林. 强迫布鲁塞尔振子周期解的普适序列. 物理学报, doi: 10.7498/aps.33.1008
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回