搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微扩张管道内幂律流体非定常电渗流动

段娟 陈耀钦 朱庆勇

引用本文:
Citation:

微扩张管道内幂律流体非定常电渗流动

段娟, 陈耀钦, 朱庆勇

Electroosmotically-driven flow of power-law fluid in a micro-diffuser

Duan Juan, Chen Yao-Qin, Zhu Qing-Yong
PDF
导出引用
  • 研究了电渗驱动下幂律流体在有限长微扩张管道内非稳态流动特性. 基于Ostwald-de Wael幂律模型, 采用高精度紧致差分离散二维Poisson-Nernst-Planck方程及修正的Cauchy动量方程, 数值模拟了初始及稳态时刻微扩张管道内幂律流体电渗流流场分布情况, 研究了管道截面改变对幂律流体无量纲剪切应变率及无量纲表观黏度的影响, 以及无量纲表观黏度对拟塑性流体与胀流型流体流速分布的影响. 数值模拟结果显示, 当扩张角和无量纲电动宽度一定时, 电场驱动下的幂律流体在近壁区域速度响应都很快; 初始时刻, 近壁处表观黏度的变化受到剪切应变率变化的影响, 从而影响了三种幂律流体速度峰值的分布, 出现拟塑性流体流速在扩张段上游及扩张段近壁处速度峰值均为幂律流体中最大、而在扩张段下游三种幂律流体速度峰值相近的现象; 稳态时刻, 幂律流体速度剖面呈现塞型分布, 且满足连续性条件下, 幂律流体流速随扩张管半径增大而减小, 牛顿流体流动规律与宏观尺度下流动规律相同; 初始时刻, 在相同电动宽度、不同壁面电势作用下, 幂律流体在扩张管近壁处剪切应变率分布的差异导致表观黏度分布的差异, 并最终导致拟塑性流体与胀流型流体流速分布的差异.
    The unsteady electroosmotic flow characters of power-law fluids in a finite micro-diffuser are studied in this paper. Based on the Ostwald-de Wael model which is used to describe power-law fluids (the shear thinning, thickening and Newtonian fluids), high accuracy compact difference schemes are used to solve the two-dimensional Poisson-Nernst-Planck equations and the modified Cauchy momentum equations. Electroosmotic flow distributions of power-law fluids at initial instant and steady state are numerically simulated in this paper. It is presented that while the radius of the diffuser is increasing, the dimensionless apparent viscosity influenced by shear strain conduces to the different velocity profiles of power-law fluids. In the micro-diffuser, the shear strains of pseudo plastic and dilatant fluids are decreasing with the radius increasing and the apparent viscosity of pseudo plastic fluid is increasing with the shear strain decreasing, but the apparent viscosity of dilatant fluid is decreasing with the shear strain decreasing. The apparent viscosity of power-law fluids can estimate the flow performance, and the fluid with high viscosity flows more slowly than the one with low viscosity. The numerical results show that a fast speed response of power-law fluid is found near the wall at the beginning and the average dimensionless velocity of power-law fluids is decreasing with the radius increasing when fixing the diffuser angle and dimensionless electrokinetic diameter at the same dimensionless zeta potentials. At the initial instant, the different velocity distributions of power-law fluids from upstream to downstream near the wall in diffuser are essentially due to the change of dimensionless shear strain. Because the dimensionless shear strains of pseudo plastic and dilatant fluids are in a larger value zone in upstream, the dimensionless apparent viscosity of dilatant fluid is larger than that of the pseudo plastic fluid, and the velocity peak of pseudo plastic fluid is larger than that of the dilatant fluid. In downstream, the apparent viscosity of pseudo plastic fluid is larger than that of the dilatant fluid so that their velocity peaks are similar. At the steady state, the velocity profiles of power-law fluids are plug-like and the velocity is decreasing with increasing radius when the continuity conditions are satisfied, and the flow regularity of Newtonian is just like that on a macroscopic scale. The velocity profile of pseudo plastic fluid is larger than that of dilatant fluid in upstream and their velocity profiles in downstream are not much different. The power-law fluid flow distribution at initial instant is similar to that at the steady state. From the flow regularities respectively at initial instant and the steady state it follows that the flow rate of pseudo plastic fluid is larger than that of Newtonian fluid and the dilatant fluid flow rate is smaller than Newtonian fluid rate. At the initial instant, under the same electrokinetic diameter and different zeta potentials, the difference in shear strain among power-law fluids in the micro-diffuser near the wall leads to the difference in the apparent viscosity, and eventually leads to the velocity distribution difference between pseudo plastic and dilatant fluids.
      通信作者: 朱庆勇, mcszqy@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金重大研究项目(批准号: 91230114)和广东省消防科学技术重点实验室(批准号:2014B030301034)资助的课题.
      Corresponding author: Zhu Qing-Yong, mcszqy@mail.sysu.edu.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91230114) and the Guangdong Provincial key Laboratory of Fire Science and Technology, China(Grant No. 2014B030301034).
    [1]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [2]

    Liu Q S, Jian Y J, Yang L G 2011 Phys. Fluids 23 102001

    [3]

    Escandn J, Jimnez E, Hernndez C, Bautista O, Mndezb F 2015 Eur. J. Mech. B: Fluids 53 180

    [4]

    Cai J C 2014 Chin. Phys. B 23 044701

    [5]

    Das S, Chakraborty S 2006 Acta Anal. Chim. 559 15

    [6]

    Zhu Q Y, Deng S Y, Chen Y Q 2014 J. Non-Newtonian Fluid Mech. 38 38

    [7]

    Zhao C L, Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076

    [8]

    Nie D M, Ling J Z 2010 Acta Mech. Sin. 42 838 (in Chinese) [聂德明, 林建忠 2010 力学学报 42 838]

    [9]

    Gong L, Wu J K 2007 MEMS Devi. Tech. 6 312 (in Chinese) [龚磊, 吴健康 2007 微纳电子技术 6 312]

    [10]

    Xiao R, He Y S 2009 J. Huizhou Univ. 29 5 (in Chinese) [肖瑞, 何永森 2009 惠州学院学报 29 5]

    [11]

    Chen L, Conlisk A T 2008 Biomed Microdev. 10 289

    [12]

    Chang N K 2014 Computers Fluids 104 30

    [13]

    He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703

    [14]

    Zhang R J, Hou R H, Chen C Q 2011 Appl. Math. Mech. 32 1415 (in Chinese) [张若京, 候瑞鸿, 陈昌麒 2011 应用数学和力学 32 1415]

    [15]

    Zhou C, Zhou S Q, Zhang J X 2008 Comput. Simul. 25 62 (in Chinese) [周超, 周守强, 张家仙 2008 计算机仿真 25 62]

    [16]

    Mariani V C, Prata A T, Deschamps C J 2010 Computers Fluids 39 1672

    [17]

    Basu S, Sharma M M 1997 J. Membr. Sci. 124 77

    [18]

    Chen W F 1983 Acta Mech. Sin. 1 16 (in Chinese) [陈文芳 1983 力学学报 1 16]

    [19]

    Monreal J 2015 Annals of Physics 354 565

    [20]

    Zhang Y H, Gu X J, Robert W B, Emerson D R 2004 J. Colloid Interf. Sci. 275 670

    [21]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [22]

    Park H M, Lee W M 2008 J. Colloid Interf. Sci. 317 631

    [23]

    Zhao C, Yang C 2009 Int. J. Emerg. Multidiscipl. Fluid Sci. 1 37

    [24]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

  • [1]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 物理学报 61 124702]

    [2]

    Liu Q S, Jian Y J, Yang L G 2011 Phys. Fluids 23 102001

    [3]

    Escandn J, Jimnez E, Hernndez C, Bautista O, Mndezb F 2015 Eur. J. Mech. B: Fluids 53 180

    [4]

    Cai J C 2014 Chin. Phys. B 23 044701

    [5]

    Das S, Chakraborty S 2006 Acta Anal. Chim. 559 15

    [6]

    Zhu Q Y, Deng S Y, Chen Y Q 2014 J. Non-Newtonian Fluid Mech. 38 38

    [7]

    Zhao C L, Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076

    [8]

    Nie D M, Ling J Z 2010 Acta Mech. Sin. 42 838 (in Chinese) [聂德明, 林建忠 2010 力学学报 42 838]

    [9]

    Gong L, Wu J K 2007 MEMS Devi. Tech. 6 312 (in Chinese) [龚磊, 吴健康 2007 微纳电子技术 6 312]

    [10]

    Xiao R, He Y S 2009 J. Huizhou Univ. 29 5 (in Chinese) [肖瑞, 何永森 2009 惠州学院学报 29 5]

    [11]

    Chen L, Conlisk A T 2008 Biomed Microdev. 10 289

    [12]

    Chang N K 2014 Computers Fluids 104 30

    [13]

    He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703

    [14]

    Zhang R J, Hou R H, Chen C Q 2011 Appl. Math. Mech. 32 1415 (in Chinese) [张若京, 候瑞鸿, 陈昌麒 2011 应用数学和力学 32 1415]

    [15]

    Zhou C, Zhou S Q, Zhang J X 2008 Comput. Simul. 25 62 (in Chinese) [周超, 周守强, 张家仙 2008 计算机仿真 25 62]

    [16]

    Mariani V C, Prata A T, Deschamps C J 2010 Computers Fluids 39 1672

    [17]

    Basu S, Sharma M M 1997 J. Membr. Sci. 124 77

    [18]

    Chen W F 1983 Acta Mech. Sin. 1 16 (in Chinese) [陈文芳 1983 力学学报 1 16]

    [19]

    Monreal J 2015 Annals of Physics 354 565

    [20]

    Zhang Y H, Gu X J, Robert W B, Emerson D R 2004 J. Colloid Interf. Sci. 275 670

    [21]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨联贵, 苏洁 2013 物理学报 62 144702]

    [22]

    Park H M, Lee W M 2008 J. Colloid Interf. Sci. 317 631

    [23]

    Zhao C, Yang C 2009 Int. J. Emerg. Multidiscipl. Fluid Sci. 1 37

    [24]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

  • [1] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究. 物理学报, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [2] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [3] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究. 物理学报, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [4] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [5] 杨晓峰, 刘姣, 单方, 柴振华, 施保昌. 幂律流体顶盖驱动流中的颗粒运动. 物理学报, 2024, 73(14): 144701. doi: 10.7498/aps.73.20240164
    [6] 于欣如, 崔继峰, 陈小刚, 慕江勇, 乔煜然. 平行板微通道中一类不可压缩微极性流体在高Zeta势下的时间周期电渗流. 物理学报, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [7] 慕江勇, 崔继峰, 陈小刚, 赵毅康, 田祎琳, 于欣如, 袁满玉. 微通道中一类生物流体在高Zeta势下的电渗流及传热特性. 物理学报, 2024, 73(6): 064701. doi: 10.7498/aps.73.20231685
    [8] 张天鸽, 任美蓉, 崔继峰, 陈小刚, 王怡丹. 变截面微管道中高zeta势下幂律流体的旋转电渗滑移流动. 物理学报, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [9] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究. 物理学报, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [10] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [11] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [12] 赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣. 基于微泡共振的快速微流体声学混合方法研究. 物理学报, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [13] 王小娟, 宋梅, 郭世泽, 杨子龙. 基于有向渗流理论的关联微博转发网络信息传播研究. 物理学报, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [14] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [15] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [16] 长龙, 菅永军. 平行板微管道间Maxwell流体的高Zeta势周期电渗流动. 物理学报, 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [17] 姜洪源, 李姗姗, 侯珍秀, 任玉坤, 孙永军. 非对称电极表面微观形貌对交流电渗流速的影响. 物理学报, 2011, 60(2): 020702. doi: 10.7498/aps.60.020702
    [18] 姜洪源, 任玉坤, 陶冶. 微系统中转矩及电渗流作用下的微粒子电动旋转操控. 物理学报, 2011, 60(1): 010701. doi: 10.7498/aps.60.010701
    [19] 尤学一, 郑湘君, 郑敬茹. 微尺度流道内液体表观黏性系数的分子理论. 物理学报, 2007, 56(4): 2323-2329. doi: 10.7498/aps.56.2323
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  5625
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-10
  • 修回日期:  2015-10-22
  • 刊出日期:  2016-02-05

/

返回文章
返回