搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温金属熔体黏度突变探索

商继祥 赵云波 胡丽娜

引用本文:
Citation:

高温金属熔体黏度突变探索

商继祥, 赵云波, 胡丽娜

Abnormal viscosity changes in high-temperature metallic melts

Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na
PDF
导出引用
  • 高温金属熔体的黏度是衡量液态金属动力学性质的一个重要指标,是高温金属熔体的基本物理性能之一.熔体的黏度在表征脆性系数、金属玻璃形成能力的大小和液-液相变现象方面起关键性作用.本文在介绍高温金属熔体黏度测量方法的基础上,综合评述了单质、二元和多元合金黏度随温度的变化规律和黏度突变特征,分析了黏度突变研究的物理意义,并指出高温金属熔体黏度今后研究的发展方向.
    The viscosity of high-temperature metallic melt, which is an important index for evaluating dynamics of liquid melt, is one of the basic physical properties. It not only influences the mold-filling capacity of melting metal in traditional casting techniques, but also exhibits more distinct influence on the fabrication of advanced material, such as metallic glass. According to the variation tendency of viscosity with temperature in alloy melt, the fragility of superheated melt could be obtained, which has proved to correlate with the ability of alloy to form glass. Besides, the viscosity of alloy well above the liquidus temperature also plays a key role in probing into the characteristic of liquid-liquid phase transition, the fragile-to-strong transition phenomenon, how the potential energy landscape evolves during cooling, etc. It has been generally accepted that the viscosity of metallic melt at high temperatures increases with temperature decreasing and could be fitted by an Arrhenius curve in the whole temperature range. However, recently more and more studies show that the viscosity of metallic melt cannot be fitted by only one Arrhenius curve. Instead, there exists at least one specific temperature below which the viscosity data begins to deviate from the Arrhenius curve at high temperature during cooling. These data could be described by another Arrhenius curve. In order to in depth understand this phenomenon, in this paper we summarize the viscosity data of different metallic melts in the literature. On the basis of introducing the method of detecting high-temperature melt viscosity, we discuss comprehensively the changing tendency of viscosity with temperature and the characteristics of abnormal viscosity changes in pure metal, binary and multivariate alloys well above the liquidus temperature. It is found that the abnormal viscosity changes generally occur in alloys that could form the types of intermetallic compounds. The abnormal viscosity change in metallic melt is accompanied with exothermic or endothermic effect, depending on alloy system, and reflects the existence of liquid-liquid transition well above the liquidus temperature. Besides, such an abnormal change of viscosity influences the ability to form metallic glass liquids. Although the abnormal dynamic change of metallic melt hints the existence of complexity of structural change in liquid during cooling, what is the key factor underlying this phenomenon remains a mystery. By combining the advanced experimental techniques such as high-energy X-ray diffraction and neutron scattering with the computer simulation method, this problem may be understood further. Besides, the relation between viscosity abnormity and the phase diagram is another problem that deserves to be noticed in the future.
      通信作者: 胡丽娜, hulina0850@sina.com
    • 基金项目: 国家科技重大专项(批准号:2016YFB0300500)和国家自然科学基金(批准号:51571131)资助的课题.
      Corresponding author: Hu Li-Na, hulina0850@sina.com
    • Funds: Project supported by National Science and Technology Major Project, China (Grant No. 2016YFB0300500) and National Natural Science Foundation of China (Grant No. 51571131).
    [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究. 物理学报, 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [2] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学. 物理学报, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [4] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [5] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [6] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [10] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [11] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [12] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [13] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [14] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [15] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [16] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [17] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [18] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [19] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究. 物理学报, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  7985
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-03-23
  • 刊出日期:  2019-05-20

/

返回文章
返回