-
Glass-forming liquids exhibit unique dynamic transition behavior during temperature changes. The system undergoes a transition from the fragile liquid to the strong liquid, known as the fragile-to-strong transition as the temperature decreases. Addressing the issue of poor glass-forming ability (GFA) in Fe-based alloys, by studying the kinetic behavior of the Fe-Zr-B-M (M = Nb、Ti、Al) alloy system, we aim to reveal the mechanism of ductile-brittle transition and establish the relationship between the degree of ductile-brittle transition and the GFA. In this study, through viscosity measurements, we reveal a pronounced fragile-to-strong transition behavior in this system. Using crystallization activation energy as an evaluation criterion, we establish a negative correlation between the degree of the fragile-to-strong transition and the GFA in the Fe-Zr-B-M system. The results indicate that the crystal-like clusters play a critical role in the solidification process of the Fe-Zr-B-M metallic glasses. Based on this, we propose a fragile-to-strong transition mechanism involving the structural transformation from the icosahedral clusters to the crystal-like clusters. Through theoretical calculations of mixing enthalpy and mismatch entropy, combined with microstructural characterization, we find that alloy compositions with more negative mixing enthalpy and higher mismatch entropy can effectively suppress the tendency of icosahedral structures to transform into crystal-like structures, thereby hindering crystallization and promoting the formation of a more disordered amorphous structure. This structural feature not only corresponds to superior glass-forming ability but also manifests as a weaker fragile-to-strong transition phenomenon. In this work, the intrinsic correlation between viscosity characteristics and the GFA is revealed, providing a theoretical basis for the development of Fe-based metallic glass with high GFA.
-
Keywords:
- metallic glass /
- fragile-to-strong transition /
- viscosity /
- glass-forming ability
-
[1] Tschumi A, Laubscher T, Jeker R, Schüpfer E, Künzi H U, Güntherodt H J 1984 J. Non-Cryst. Solids 61-62 1091
[2] Warlimont H 1988 Mater. Sci. Eng. 99 1
[3] Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235
[4] Hofmann D C, Polit-Casillas R, Roberts S N, Borgonia J P, Dillon R P, Hilgemann E, Kolodziejska J 2016 Sci. Rep. 6 37773
[5] Telford M 2004 Mater. Today 7 36
[6] Wang G H, He A N, Dong Y Q, Li J W 2023 J. Mater. Sci.:Mater. Electron. 34 545
[7] Wang R B, Jia J L, Wu Y, Guo W H, Chen N, Shao Y, Yao K F 2024 Sci. China-Phys. Mech. Astron. 67 116111
[8] Hu L N, Wang Z 2024 Liquid Metal and Heritability (Beijing: Chemical Industry Press) p16 (in Chinese) [胡丽娜,王铮 2024 液态金属及遗传性 (北京:化学工业出版社) 第16页]
[9] Miller C C 1924 Proc. R. Soc. A 106 724
[10] Angell C A 1995 Science 267 1924
[11] Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620
[12] Johnson W L 1999 MRS Bull. 24 42
[13] Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508
[14] Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501
[15] Ito K, Moynihan C T, Angell C A 1999 Nature 398 492
[16] Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508
[17] Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401
[18] Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508
[19] Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246
[20] Zhai X T, Chu W, Bai Y W, Zhao S, Dong B S, Liu Y H, Hu L N 2024 Scripta Mater. 243 115982
[21] Jagla E A 1999 J. Phys.:Condens. Matter 11 10251
[22] Hajime T 2003 J. Phys.:Condens. Matter 15 L703
[23] Wang T, Hu L N, Liu Y H, Hui X D 2019 Mater. Sci. Eng: A 744 316
[24] Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508
[25] Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258
[26] Wu Y C, Yan L, Liu J F, Qiu H, Deng B, Wang D P, Shi R H, Chen Y, Guan P F 2024 Mater. Today Commun. 40 109440
[27] Chen X P, Zheng Z G, Chen Y B, Qiu Z G, Zeng D C 2025 Physica B 713 417362
[28] Sun Q Y, Zhang K, Zhang S, Chen C, Wei R, Cai Y F, Wu S J, Li F S, Wang T 2024 Intermetallics 182 108781
[29] Huang H Y, Shao G S, Tsakiropoulos P 2008 J. Alloys Compd. 459 185
[30] Bai Y W, Hu L N, Qin J Y, Wang Z, Song K K 2021 J. Non-Cryst. Solids 572 121119
[31] Fulcher G S 1925 J. Am. Ceram. Soc. 8 339
[32] Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245
[33] Avramov I, Milchev A 1988 J. Non-Cryst. Solids 104 253
[34] Vogel H 1921 Physikalische Zeitschrift 22 645
[35] Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780
[36] Zheng Q J, Mauro J C, Ellison A J, Potuzak M, Yue Y Z 2011 Phys. Rev. B 83 212202
[37] Komatsu T 1995 J. Non-Cryst. Solids 185 199
[38] Hodge I M 1996 J. Non-Cryst. Solids 202 164
[39] Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217
[40] Busch R, Gallino I 2017 JOM 69 2178
[41] Zhao Q 2018 Master Dissertation (Jinan: Shandong University) (in Chinese)[赵茜 2018 硕士学位论文(济南:山东大学)]
[42] Zhou C 2015 Master Dissertation (Jinan: Shandong University) (in Chinese)[周超 2015 硕士学位论文(济南:山东大学)]
[43] Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495
[44] Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372
[45] De Boer F R, Mattens W, Boom R, Miedema A, Niessen A 1988 The U.S.A. and Canada: Elsevier
[46] Smithells C J 2013 Metals reference book: Elsevier
[47] Hyun N J, Demetriou M D, Johnson W L 2011 Appl. Phys. Lett. 99 161902
[48] Blázquez J S, Roth S, Conde A 2005 J. Magn. Magn. Mater. 290-291 1589
[49] Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non-Cryst. Solids 537 120020
计量
- 文章访问数: 54
- PDF下载量: 4
- 被引次数: 0