搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制

王建峰 史禄鑫 费婷 白延文 胡丽娜

引用本文:
Citation:

FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制

王建峰, 史禄鑫, 费婷, 白延文, 胡丽娜

Fragile-to-strong transition in FeZrB-based metallic glasses and its impact on glass-forming ability

WANG Jianfeng, SHI Luxin, FEI Ting, BAI Yanwen, HU Lina
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 玻璃形成液体在温度变化过程中会表现出独特的动力学转变行为,在降温过程中,系统会经历从脆性液体到强性液体的转变,称为强脆转变。本研究以FeZr-B-M四元体系为研究对象,通过粘度实验揭示了该体系存在显著的强脆转变行为,并以晶化激活能作为评价指标,建立了Fe-Zr-B-M体系中强脆转变程度与玻璃形成能力之间的负相关性。研究结果表明,类晶团簇在Fe-Zr-B-M体系金属玻璃的凝固过程中起关键作用,据此提出了基于二十面体团簇向类晶团簇结构转变的强脆转变机理,并确立了混合焓和错配熵在调控Fe基非晶合金液体强脆转变过程中的重要作用。
    Glass-forming liquids exhibit unique dynamic transition behavior during temperature changes. The system undergoes a transition from the fragile liquid to the strong liquid, known as the fragile-to-strong transition as the temperature decreases. Addressing the issue of poor glass-forming ability (GFA) in Fe-based alloys, by studying the kinetic behavior of the Fe-Zr-B-M (M = Nb、Ti、Al) alloy system, we aim to reveal the mechanism of ductile-brittle transition and establish the relationship between the degree of ductile-brittle transition and the GFA. In this study, through viscosity measurements, we reveal a pronounced fragile-to-strong transition behavior in this system. Using crystallization activation energy as an evaluation criterion, we establish a negative correlation between the degree of the fragile-to-strong transition and the GFA in the Fe-Zr-B-M system. The results indicate that the crystal-like clusters play a critical role in the solidification process of the Fe-Zr-B-M metallic glasses. Based on this, we propose a fragile-to-strong transition mechanism involving the structural transformation from the icosahedral clusters to the crystal-like clusters. Through theoretical calculations of mixing enthalpy and mismatch entropy, combined with microstructural characterization, we find that alloy compositions with more negative mixing enthalpy and higher mismatch entropy can effectively suppress the tendency of icosahedral structures to transform into crystal-like structures, thereby hindering crystallization and promoting the formation of a more disordered amorphous structure. This structural feature not only corresponds to superior glass-forming ability but also manifests as a weaker fragile-to-strong transition phenomenon. In this work, the intrinsic correlation between viscosity characteristics and the GFA is revealed, providing a theoretical basis for the development of Fe-based metallic glass with high GFA.
  • [1]

    Tschumi A, Laubscher T, Jeker R, Schüpfer E, Künzi H U, Güntherodt H J 1984 J. Non-Cryst. Solids 61-62 1091

    [2]

    Warlimont H 1988 Mater. Sci. Eng. 99 1

    [3]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235

    [4]

    Hofmann D C, Polit-Casillas R, Roberts S N, Borgonia J P, Dillon R P, Hilgemann E, Kolodziejska J 2016 Sci. Rep. 6 37773

    [5]

    Telford M 2004 Mater. Today 7 36

    [6]

    Wang G H, He A N, Dong Y Q, Li J W 2023 J. Mater. Sci.:Mater. Electron. 34 545

    [7]

    Wang R B, Jia J L, Wu Y, Guo W H, Chen N, Shao Y, Yao K F 2024 Sci. China-Phys. Mech. Astron. 67 116111

    [8]

    Hu L N, Wang Z 2024 Liquid Metal and Heritability (Beijing: Chemical Industry Press) p16 (in Chinese) [胡丽娜,王铮 2024 液态金属及遗传性 (北京:化学工业出版社) 第16页]

    [9]

    Miller C C 1924 Proc. R. Soc. A 106 724

    [10]

    Angell C A 1995 Science 267 1924

    [11]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620

    [12]

    Johnson W L 1999 MRS Bull. 24 42

    [13]

    Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508

    [14]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501

    [15]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508

    [19]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246

    [20]

    Zhai X T, Chu W, Bai Y W, Zhao S, Dong B S, Liu Y H, Hu L N 2024 Scripta Mater. 243 115982

    [21]

    Jagla E A 1999 J. Phys.:Condens. Matter 11 10251

    [22]

    Hajime T 2003 J. Phys.:Condens. Matter 15 L703

    [23]

    Wang T, Hu L N, Liu Y H, Hui X D 2019 Mater. Sci. Eng: A 744 316

    [24]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508

    [25]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258

    [26]

    Wu Y C, Yan L, Liu J F, Qiu H, Deng B, Wang D P, Shi R H, Chen Y, Guan P F 2024 Mater. Today Commun. 40 109440

    [27]

    Chen X P, Zheng Z G, Chen Y B, Qiu Z G, Zeng D C 2025 Physica B 713 417362

    [28]

    Sun Q Y, Zhang K, Zhang S, Chen C, Wei R, Cai Y F, Wu S J, Li F S, Wang T 2024 Intermetallics 182 108781

    [29]

    Huang H Y, Shao G S, Tsakiropoulos P 2008 J. Alloys Compd. 459 185

    [30]

    Bai Y W, Hu L N, Qin J Y, Wang Z, Song K K 2021 J. Non-Cryst. Solids 572 121119

    [31]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339

    [32]

    Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245

    [33]

    Avramov I, Milchev A 1988 J. Non-Cryst. Solids 104 253

    [34]

    Vogel H 1921 Physikalische Zeitschrift 22 645

    [35]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780

    [36]

    Zheng Q J, Mauro J C, Ellison A J, Potuzak M, Yue Y Z 2011 Phys. Rev. B 83 212202

    [37]

    Komatsu T 1995 J. Non-Cryst. Solids 185 199

    [38]

    Hodge I M 1996 J. Non-Cryst. Solids 202 164

    [39]

    Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217

    [40]

    Busch R, Gallino I 2017 JOM 69 2178

    [41]

    Zhao Q 2018 Master Dissertation (Jinan: Shandong University) (in Chinese)[赵茜 2018 硕士学位论文(济南:山东大学)]

    [42]

    Zhou C 2015 Master Dissertation (Jinan: Shandong University) (in Chinese)[周超 2015 硕士学位论文(济南:山东大学)]

    [43]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495

    [44]

    Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372

    [45]

    De Boer F R, Mattens W, Boom R, Miedema A, Niessen A 1988 The U.S.A. and Canada: Elsevier

    [46]

    Smithells C J 2013 Metals reference book: Elsevier

    [47]

    Hyun N J, Demetriou M D, Johnson W L 2011 Appl. Phys. Lett. 99 161902

    [48]

    Blázquez J S, Roth S, Conde A 2005 J. Magn. Magn. Mater. 290-291 1589

    [49]

    Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non-Cryst. Solids 537 120020

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, doi: 10.7498/aps.71.20211304
    [2] 于海滨, 杨群. 超稳定玻璃. 物理学报, doi: 10.7498/aps.66.176108
    [3] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, doi: 10.7498/aps.66.176102
    [4] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, doi: 10.7498/aps.66.176404
    [5] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, doi: 10.7498/aps.66.176402
    [6] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, doi: 10.7498/aps.66.176403
    [7] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, doi: 10.7498/aps.65.096402
    [8] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, doi: 10.7498/aps.65.066401
    [9] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, doi: 10.7498/aps.63.058101
    [10] 崔晓, 徐保臣, 王知鸷, 王丽芳, 张博, 祖方遒. 1 at% Ag替代Zr57Cu20Al10Ni8Ti5 金属玻璃中各组元对玻璃形成能力及热稳定性的作用分析. 物理学报, doi: 10.7498/aps.62.016101
    [11] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, doi: 10.7498/aps.61.196202
    [12] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, doi: 10.7498/aps.61.036402
    [13] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, doi: 10.7498/aps.61.036201
    [14] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, doi: 10.7498/aps.61.136401
    [15] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究. 物理学报, doi: 10.7498/aps.60.016103
    [16] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, doi: 10.7498/aps.58.2556
    [17] 夏明许, 孟庆格, 张曙光, 马朝利, 李建国. 金属玻璃形成液体的热力学特性. 物理学报, doi: 10.7498/aps.55.6543
    [18] 余 鹏, 白海洋, 汤美波, 王万录, 汪卫华. 具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃. 物理学报, doi: 10.7498/aps.54.3284
    [19] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, doi: 10.7498/aps.53.3839
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  54
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-16

/

返回文章
返回