搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制

王建峰 史禄鑫 费婷 白延文 胡丽娜

引用本文:
Citation:

FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制

王建峰, 史禄鑫, 费婷, 白延文, 胡丽娜

Fragile-to-strong transition of FeZrB-based metallic glass and its influence on glass-forming ability

WANG Jianfeng, SHI Luxin, FEI Ting, BAI Yanwen, HU Lina
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 玻璃形成液体在温度变化过程中会表现出独特的动力学转变行为, 在降温过程中, 系统会经历从脆性液体到强性液体的转变, 称为强脆转变. 本研究以Fe-Zr-B-M四元体系为研究对象, 通过黏度实验揭示该体系存在显著的强脆转变行为, 并以晶化激活能作为评价指标, 建立Fe-Zr-B-M体系中强脆转变程度与玻璃形成能力之间的负相关性. 结果表明, 类晶团簇在Fe-Zr-B-M体系金属玻璃的凝固过程中起关键作用, 据此提出了基于二十面体团簇向类晶团簇结构转变的强脆转变机理, 并确立了混合焓和错配熵在调控Fe基非晶合金液体强脆转变过程中的重要作用.
    Glass-forming liquids exhibit unique dynamic transition behavior during temperature changes. The system undergoes a transition from the fragile liquid to the strong liquid, which is known as the fragile-to-strong transition as the temperature decreases. In order to address the issue of poor glass-forming ability (GFA) in Fe-based alloys, through studying the kinetic behavior of the Fe-Zr-B-M (M = Nb, Ti, Al) alloy system, the mechanism of ductile-brittle transition is revealed and the relationship between the degree of ductile-brittle transition and the GFA is established. In this study, through viscosity measurements, a pronounced fragile-to-strong transition behavior in this system is revealed. By using crystallization activation energy as an evaluation criterion, a negative correlation between the degree of the fragile-to-strong transition and the GFA in the Fe-Zr-B-M system is established. The results indicate that the crystal-like clusters play a critical role in the solidification process of the Fe-Zr-B-M metallic glasses. Based on this, a fragile-to-strong transition mechanism involving the structural transformation from the icosahedral clusters to the crystal-like clusters is proposed. Through theoretical calculations of mixing enthalpy and mismatch entropy and by combining microstructural characterization, it is found that alloy compositions with more negative mixing enthalpy and higher mismatch entropy can effectively suppress the tendency of icosahedral structures to transform into crystal-like structures, thereby hindering crystallization and promoting the formation of a more disordered amorphous structure. This structural feature not only corresponds to superior glass-forming ability but also exhibits a weak fragile-to-strong transition phenomenon. In this work, the intrinsic correlation between viscosity characteristics and the GFA is revealed, providing a theoretical basis for developing Fe-based metallic glasses with high GFA.
  • 图 1  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带的(a) XRD曲线和(b) HRTEM图像, 插图为相应的选区电子衍射图像

    Fig. 1.  (a) X-ray diffraction patterns and (b) HRTEM images of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons, the inset of panel (b) is the corresponding selected area electron diffraction images.

    图 2  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带的DSC曲线, 升温速率为20 K/min

    Fig. 2.  DSC curves of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons with heating rate is 20 K/min.

    图 3  降温过程中黏度变化 (a) Fe84Zr9B7; (b) (Fe0.84Zr0.09B0.07)97Nb3; (c) (Fe0.84Zr0.09B0.07)97Al3

    Fig. 3.  Temperature dependence of the viscosity values (η) during cooling: (a) Fe84Zr9B7; (b) (Fe0.84Zr0.09B0.07)97Nb3; (c) (Fe0.84Zr0.09B0.07)97Al3.

    图 4  (a) Fe84Zr9B7金属玻璃条带不同热扫描速率下的DSC曲线; (b) FeZrB, Nb3, Ti3和Al3的Kissinger公式拟合曲线

    Fig. 4.  DSC curves of Fe84Zr9B7 metallic glass ribbons with different heating rates; (b) the fitting curses of Kissinger’s formula for FeZrB, Nb3, Ti3 and Al3.

    图 5  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃液体黏度对数随温度的变化趋势

    Fig. 5.  Vscosities of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) as functions of temperature.

    图 6  (a) Fe-Zr-B-M强脆转变系数f与晶化激活能E的关系; (b) CuZr合金玻璃形成的临界厚度Dmax、强脆转变系数f随Cu含量的变化[19]

    Fig. 6.  (a) Correlation between the activation energy of crystallization (E) and the fragile-to-strong trasition parameter (f) of Fe-Zr-B-M; (b) the critical sample thickness (Dmax) for glass formation, the fragile-to-strong trasition parameter (f) versus the fraction of Cu in CuZr alloy series.

    图 7  Fe-Zr-B-M体系的(a)强脆转变系数f; (b)晶化激活能E及(c)混合焓和错配熵乘积的绝对值${|\Delta }{{H}}^{\text{chem}}\times $ $ {{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $

    Fig. 7.  (a) The fragile-to-strong trasition parameter (f); (b) the activation energy of crystallization (E); (c) $ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $ of Fe-Zr-B-M system.

    图 8  (a) 正方形的划分方法; (b)—(e) Fe84Zr9B7, (Fe0.84Zr0.09B0.07)97Nb3, (Fe0.84Zr0.09B0.07)97Ti3及(Fe0.84Zr0.09B0.07)97Al3自相关分析图像

    Fig. 8.  (a) Method of dividing the HRTEM images into cells; (b)–(e) autocorrelation images of Fe84Zr9B7, (Fe0.84Zr0.09B0.07)97Nb3, (Fe0.84Zr0.09B0.07)97Ti3 and (Fe0.84Zr0.09B0.07)97Al3.

    图 9  Fe-Zr-B-M体系在冷却过程中的团簇演变示意图, 蓝色圆点和红色圆点分别代表类晶团簇和二十面体团簇, 灰色圆点代表自由原子或者其他局域结构

    Fig. 9.  Schematic diagram of clusters evolution of Fe-Zr-B-M during the cooling process, the blue and red dots represent the crystal-like and the icosahedra clusters in the liquid, respectively, while the gray dots represent the free atoms or other local structural configurations.

    表 1  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)合金的高温脆性系数m′和过冷液体脆性系数m

    Table 1.  Fragility index for high temperature (m′) liquid and supercooled liquid (m) of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al).

    成分 高温脆性m E/(kJ·mol–1) R2 过冷液体脆性系数m
    Fe84Zr9B7 129.3 413.8 0.976 25.2
    (Fe0.84Zr0.09B0.07)97Nb3 127.6 512.3 0.962 30.3
    (Fe0.84Zr0.09B0.07)97Ti3 489.5 0.976 29.1
    (Fe0.84Zr0.09B0.07)97Al3 126.7 436.6 0.90 26.4
    下载: 导出CSV

    表 2  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)金属玻璃条带在不同升温速率(10—40 K/min)下的初始晶化温度Tx

    Table 2.  Initial crystallization temperatures of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al) metallic glass ribbons at different heating rate (10–40 K/min).

    成分升温速率/ (K·min–1)初始晶化温度Tx /K升温速率/ (K·min–1)初始晶化温度Tx/K
    Fe84Zr9B710854.520859.3
    30866.140868.4
    (Fe0.84Zr0.09B0.07)97Nb310879.820885.2
    30893.140897.1
    (Fe0.84Zr0.09B0.07)Ti97310875.020881.7
    30886.540889.2
    (Fe0.84Zr0.09B0.07)97Al310840.720846.1
    30852.340854.3
    下载: 导出CSV

    表 3  (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al)的强脆转变系数f, 晶化激活能E, 混合焓$ {\Delta }{{H}}^{\text{chem}} $, 错配熵$ {{S}}_{\sigma}/{{k}}_{\text{B}} $, 混合焓和错配熵乘积的绝对值$ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $

    Table 3.  The fragile-to-strong trasition parameter (f), the activation energy of crystallization (E), mixing enthalpy (∆Hchem), mismatch entropy (${{S}}_{\sigma}/{{k}}_{\text{B}} $) and their absolute multiplication of (Fe0.84Zr0.09B0.07)100-xMx (x = 0, 3; M = Nb, Ti, Al).

    成分 强脆转变系数f 晶化激活能E 混合焓$ {\Delta }{{H}}^{\text{chem}} $/(kJ·mol–1) 错配熵$ {{S}}_{\sigma}/{{k}}_{\text{B}} $ $ {|\Delta }{{H}}^{\text{chem}}\times{{S}}_{\sigma}/{{k}}_{\text{B}}\text{|} $
    Fe84Zr9B7 5.13 413.8 –12.9 0.219 2.82
    (Fe0.84Zr0.09B0.07)97Nb3 4.21 512.3 –14.1 0.227 3.20
    (Fe0.84Zr0.09B0.07)97Ti3 4.29—4.46 489.5 –14.2 0.227 3.22
    (Fe0.84Zr0.09B0.07)97Al3 4.80 436.6 –13.6 0.219 2.97
    下载: 导出CSV
  • [1]

    Tschumi A, Laubscher T, Jeker R, Schüpfer E, Künzi H U, Güntherodt H J 1984 J. Non-Cryst. Solids 61-62 1091

    [2]

    Warlimont H 1988 Mater. Sci. Eng. 99 1Google Scholar

    [3]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [4]

    Hofmann D C, Polit-Casillas R, Roberts S N, Borgonia J P, Dillon R P, Hilgemann E, Kolodziejska J 2016 Sci. Rep. 6 37773Google Scholar

    [5]

    Telford M 2004 Mater. Today 7 36

    [6]

    Wang G H, He A N, Dong Y Q, Li J W 2023 J. Mater. Sci. : Mater. Electron. 34 545Google Scholar

    [7]

    Wang R B, Jia J L, Wu Y, Guo W H, Chen N, Shao Y, Yao K F 2024 Sci. China-Phys. Mech. Astron. 67 116111Google Scholar

    [8]

    胡丽娜, 王铮 2024 液态金属及遗传性 (北京: 化学工业出版社) 第16页

    Hu L N, Wang Z 2024 Liquid Metal and Heritability (Beijing: Chemical Industry Press) p16

    [9]

    Miller C C 1924 Proc. R. Soc. A 106 724

    [10]

    Angell C A 1995 Science 267 1924Google Scholar

    [11]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [12]

    Johnson W L 1999 MRS Bull. 24 42Google Scholar

    [13]

    Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508Google Scholar

    [14]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [15]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492Google Scholar

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508Google Scholar

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401Google Scholar

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508Google Scholar

    [19]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [20]

    Zhai X T, Chu W, Bai Y W, Zhao S, Dong B S, Liu Y H, Hu L N 2024 Scripta Mater. 243 115982Google Scholar

    [21]

    Jagla E A 1999 J. Phys. : Condens. Matter 11 10251Google Scholar

    [22]

    Hajime T 2003 J. Phys. : Condens. Matter 15 L703Google Scholar

    [23]

    Wang T, Hu L N, Liu Y H, Hui X D 2019 Mater. Sci. Eng: A 744 316Google Scholar

    [24]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508Google Scholar

    [25]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258Google Scholar

    [26]

    Wu Y C, Yan L, Liu J F, Qiu H, Deng B, Wang D P, Shi R H, Chen Y, Guan P F 2024 Mater. Today Commun. 40 109440Google Scholar

    [27]

    Chen X P, Zheng Z G, Chen Y B, Qiu Z G, Zeng D C 2025 Physica B 713 417362Google Scholar

    [28]

    Sun Q Y, Zhang K, Zhang S, Chen C, Wei R, Cai Y F, Wu S J, Li F S, Wang T 2024 Intermetallics 182 108781

    [29]

    Huang H Y, Shao G S, Tsakiropoulos P 2008 J. Alloys Compd. 459 185Google Scholar

    [30]

    Bai Y W, Hu L N, Qin J Y, Wang Z, Song K K 2021 J. Non-Cryst. Solids 572 121119Google Scholar

    [31]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339Google Scholar

    [32]

    Tammann G, Hesse W 1926 Z. Anorg. Allg. Chem. 156 245Google Scholar

    [33]

    Avramov I, Milchev A 1988 J. Non-Cryst. Solids 104 253Google Scholar

    [34]

    Vogel H 1921 Physikalische Zeitschrift 22 645

    [35]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780Google Scholar

    [36]

    Zheng Q J, Mauro J C, Ellison A J, Potuzak M, Yue Y Z 2011 Phys. Rev. B 83 212202Google Scholar

    [37]

    Komatsu T 1995 J. Non-Cryst. Solids 185 199Google Scholar

    [38]

    Hodge I M 1996 J. Non-Cryst. Solids 202 164Google Scholar

    [39]

    Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217Google Scholar

    [40]

    Busch R, Gallino I 2017 JOM 69 2178Google Scholar

    [41]

    赵茜 2018 硕士学位论文(济南: 山东大学)

    Zhao Q 2018 M. S. Thesis (Ji’nan: Shandong University

    [42]

    周超 2015 硕士学位论文(济南: 山东大学)

    Zhou C 2015 M. S. Thesis (Ji’nan: Shandong University

    [43]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [44]

    Takeuchi A, Inoue A 2000 Mater. Trans. JIM 41 1372Google Scholar

    [45]

    De Boer F R, Mattens W, Boom R, Miedema A, Niessen A 1988 (The U. S. A. and Canada: Elsevier

    [46]

    Smithells C J 2013 Metals reference book: Elsevier

    [47]

    Hyun N J, Demetriou M D, Johnson W L 2011 Appl. Phys. Lett. 99 161902Google Scholar

    [48]

    Blázquez J S, Roth S, Conde A 2005 J. Magn. Magn. Mater. 290-291 1589

    [49]

    Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non-Cryst. Solids 537 120020Google Scholar

  • [1] 王寿成, 潘强强, 宁睿, 彭海龙. 软硬相序构金属玻璃中的剪切带行为. 物理学报, doi: 10.7498/aps.74.20250845
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, doi: 10.7498/aps.71.20211304
    [3] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, doi: 10.7498/aps.67.20172721
    [4] 于海滨, 杨群. 超稳定玻璃. 物理学报, doi: 10.7498/aps.66.176108
    [5] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, doi: 10.7498/aps.66.176102
    [6] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, doi: 10.7498/aps.66.176404
    [7] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, doi: 10.7498/aps.66.176402
    [8] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, doi: 10.7498/aps.66.176403
    [9] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, doi: 10.7498/aps.65.066401
    [10] 崔晓, 徐保臣, 王知鸷, 王丽芳, 张博, 祖方遒. 1 at% Ag替代Zr57Cu20Al10Ni8Ti5 金属玻璃中各组元对玻璃形成能力及热稳定性的作用分析. 物理学报, doi: 10.7498/aps.62.016101
    [11] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, doi: 10.7498/aps.61.196202
    [12] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, doi: 10.7498/aps.61.036402
    [13] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, doi: 10.7498/aps.61.036201
    [14] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, doi: 10.7498/aps.61.136401
    [15] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究. 物理学报, doi: 10.7498/aps.60.016103
    [16] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, doi: 10.7498/aps.58.2556
    [17] 夏明许, 孟庆格, 张曙光, 马朝利, 李建国. 金属玻璃形成液体的热力学特性. 物理学报, doi: 10.7498/aps.55.6543
    [18] 余 鹏, 白海洋, 汤美波, 王万录, 汪卫华. 具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃. 物理学报, doi: 10.7498/aps.54.3284
    [19] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, doi: 10.7498/aps.53.3839
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  345
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-08-04
  • 上网日期:  2025-08-16

/

返回文章
返回