搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软硬相序构金属玻璃中的剪切带行为

王寿成 潘强强 宁睿 彭海龙

引用本文:
Citation:

软硬相序构金属玻璃中的剪切带行为

王寿成, 潘强强, 宁睿, 彭海龙

Shear Banding Behavior in Soft-Hard Phase Ordered Metallic Glasses

WANG Shoucheng, PAN Qiangqiang, NING Rui, PENG Hailong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 金属玻璃(MGs)的剪切带行为与其微观结构不均匀性密切相关. 传统分子动力学(MD)模拟因超快冷却速率导致MGs结构保留了更多液体特征, 而交换原子的蒙特卡洛(SMC)方法能够在模拟上制备出可匹配实验室时间冷却速度的低能态金属玻璃. 本研究通过SMC结合MD方法, 构建软硬相分布可控的Cu50Zr50金属玻璃样品, 揭示纳米尺度结构不均匀性对剪切带萌生与扩展的调控机制. 由MD制备的软相中二十面体有序团簇含量较少, 优先激活塑性事件, 促进应力重新分布, 与邻近硬相一起响应对剪切带扩展起协同作用. MC制备的硬相区由于其高密度的二十面体团簇的含量, 使得应力局域集中, 形成窄剪切带. 通过调控硬相体积分数, 复合样品发生由韧到脆转变. 此外, 在保持硬相百分比不变的前提下, 不同序构策略可以改变非晶的力学行为: 离散硬相的分布能够增加样品的稳定性, 推迟剪切带的产生; 硬相包围软相的策略能够促进样品中产生二次剪切带, 使得剪切带区域相对非局域化. 该研究结果揭示了软硬区结构不均匀性对非晶合金力学性能的影响, 以及为采用序构方法设计金属玻璃力学性能提供了可能的理论指导.
    Shear banding behavior of metallic glasses (MGs) strongly correlates with the microstructural heterogeneity. Understanding how the nucleation and propagation of shear bands governed by the nanoscale structural heterogeneity are crucial for designing high-performance MGs. Herein, we utilized conventional Molecular dynamics (MD) and swap Monte Carlo (SMC) simulations to construct two phases of CuZr metallic glasses: one the soft phase with a high cooling rate about 1013 K/s, and the other one the hard phase with a extremely low cooling rate in simulations about 104 K/s. The soft phase is more prone to the plastic deformation due to the poor population of icosahedral clusters; the hard phase is of more icosahedral clusters, promoting shear localization once the shear bands form inside. We found a ductile-to-brittle transition in the soft-and-hard phase ordered MGs with the increment of the hard-region fraction c. Additionally, the strategy of how to order these two phases could strongly affect the mechanical behavior of MGs. Dispersive and isolated hard-regions can enhance the mechanical stability of MGs, delaying the occurrence of shear banding. Instead, surrounding soft regions by hard regions can induce a secondary shear band that formed through the reorientation of plastic zones under constrained deformation, leading to a relatively more delocalized plastic deformation zones. The work unveils that the structural heterogeneity achieved by tuning the topology of soft and hard phase can significantly change the mechanical performance of MGs, and this could guide the design of metallic glasses with controllable structures via architectural ordering strategies.
  • 图 1  不同软硬区序构$ \mathrm Cu_{50}Zr_{50} $MGs的应力-应变曲线, 插图是屈服应力随c的曲线 (a) 硬区位于样品中间的一个球形区域; (b) 硬区位于样品中心的八个分开的球形区域; (c) 软区位于样品中间的一个球形区域; (d) 软区位于样品中心的八个分开的球形区域

    Fig. 1.  Stress-strain curves of the soft-hard regions ordered $ \mathrm Cu_{50}Zr_{50} $ MGs, with the inset showing the c-dependent yield stress. (a) The hard region locating at the center as a spherical shape; (b) The hard region locating at the center as eight spherical zones; (c) The soft region locating at the center as a spherical shape; (d) The soft region locating at the center as eight spherical zones.

    图 2  四组序构$ \mathrm Cu_{50}Zr_{50} $金属玻璃中$\langle 0,\ 0,\ 12,\ 0\rangle $和局域五次对称性参数(FFLS)随硬相含量c的变化 (a) $\langle 0,\ 0,\ 12,\ 0\rangle $含量; (b) FFLS含量; (c—f) FFLS分布

    Fig. 2.  Evolution of $\langle 0,\ 0,\ 12,\ 0\rangle $ and the FFLS parameters with c in the ordered $ \mathrm Cu_{50}Zr_{50} $ MGs: (a) $\langle 0,\ 0,\ 12,\ 0\rangle $ clusters; (b) the FFLS parameters; (c–f) the FFLS distribution.

    图 3  沿z方向平均的原子非仿射位移量及x-y平面上二十面体团簇空间分布: $ c = 0{\text{%}} $样品, (a) 临界应变$ \gamma_c $前非仿射形变量图, (b) 临界应变$ \gamma_c $后非仿射形变量图, 以及 (c) 二十面体团簇的分布; $ c = 100{\text{%}} $样品, (a) 临界应变$ \gamma_c $前非仿射形变量图, (b) 临界应变$ \gamma_c $后非仿射形变量图, 以及 (c) 二十面体团簇的分布

    Fig. 3.  Spatial distribution of the non-affine displacement field and icosahedral clusters: (a) and (b) $ \mathrm D^2 $ distribution before and after the critical strain at $ c = 0{\text{{\text{%}}}} $, respectively; (d) and (e) $ \mathrm D^2 $ distribution before and after the critical strain at $ c = 100{\text{{\text{%}}}} $, respectively; (c) and (f) the icosahedral cluster distribution at $ c = 0{\text{{\text{%}}}} $ and $ c = 100{\text{{\text{%}}}} $, respectively.

    图 4  四组序构样品(c均为$ 90{\text{%}} $)在临界应变前后非仿射位移量的分布 (a—b) Group1临界应变前后, (c—d) Group2临界应变前后, (e—f) Group3临界应变前后, (g—h) Group4临界应变前后分布情况

    Fig. 4.  The two-dimensional $ \mathrm D^2 $ distribution of the ordered MGs with c = 90%: (a–b) distribution before and after $ \gamma_c $ in Group1, (c–d) distribution before and after $ \gamma_c $ in Group2, (e–f) distribution before and after $ \gamma_c $ in Group3, (g–h) distribution before and after $ \gamma_c $ in Group4.

    图 5  硬区浓度为$ 90{\text{%}} $样品二次剪切带产生过程中非仿射位移的空间分布情况 (a—d) Group3样品中应变分别为0.336, 0.352, 0.360和0.368时的非仿射形变场; (e—h) Group4样品中应变分别为0.336, 0.352, 0.360和0.368时的非仿射形变场

    Fig. 5.  The two-dimensional $ \mathrm D^2 $ distribution of MGs samples with $ c = 90{\text{%}} $ in the strain range of the secondary shear band: (a–d) strain at 0.336, 0.352, 0.360, and 0.368 for Group3 samples; (e–h) strain at 0.336, 0.352, 0.360, and 0.368 for Group4 samples.

    图 6  硬相含量较多的样品中产生一次剪切带和二次剪切带示意图 (a1—a2) 应变较小时软区诱导第一次剪切带产生示意图; (b1—b3) 应变较大时软区诱导第二次剪切带产生示意图; (c1—c2)和 (d1—d3) 分别为硬区较为离散情况下第一次和第二次剪切带产生示意图

    Fig. 6.  Schematic diagrams for the generation of the primary shear band and the secondary shear band: (a1–a2) the emergency of the primary shear band at relative small strains; (b1–b3) the emergency of the secondary shear band at relative large strains; (c1–c2) and (d1–d3) are the emergency of the primary and the sendary shear bands when the hard-phase regions are dispersively distributed, respectively.

  • [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R-Rep. 44 45Google Scholar

    [2]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [3]

    Kruzic J J 2016 Adv. Eng. Mater. 18 1308Google Scholar

    [4]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [5]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [6]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [7]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar

    [8]

    Priezjev N V 2017 Phys. Rev. E 95 023002Google Scholar

    [9]

    Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee D, Li J, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu A J 2017 Science 358 1033Google Scholar

    [10]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [11]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [12]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [13]

    Wang Q, Shang Y H, Yang Y 2023 Mater. Futures 2 017501Google Scholar

    [14]

    Lu X Q, Feng S D, Li L, Wang L M, Liu R P 2023 J. Phys. Chem. Lett. 14 6998Google Scholar

    [15]

    Vollmayr K, Kob W, Binder K 1996 J. Chem. Phys. 105 4714Google Scholar

    [16]

    Liu Y, Bei H, Liu C T, George E P 2007 Appl. Phys. Lett. 90 071909Google Scholar

    [17]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105Google Scholar

    [18]

    Ryltsev R E, Klumov B A, Chtchelkatchev N M, Shunyaev K Y 2016 J. Chem. Phys. 145 034506Google Scholar

    [19]

    J. A, Bouchbinder E, Procaccia I 2013 Phys. Rev. E 87 042310

    [20]

    Fan M, Wang M L, Zhang K, Liu Y H, Schroers J, Shattuck M D, O’Hern C S 2017 Phys. Rev. E 95 022611Google Scholar

    [21]

    Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L 2012 Phys. Rev. B 85 184203Google Scholar

    [22]

    Grigera T S, Parisi G 2001 Phys. Rev. E 63 045102

    [23]

    Berthier L, Coslovich D, Ninarello A, Ozawa M 2016 Phys. Rev. Lett. 116 238002Google Scholar

    [24]

    Ninarello A, Berthier L, Coslovich D 2017 Phys. Rev. X 7 021039

    [25]

    Parmar A D S, Ozawa M, Berthier L 2020 Phys. Rev. Lett. 125 085505Google Scholar

    [26]

    Zhang Z, Ding J, Ma E 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2213941119Google Scholar

    [27]

    Yu J H, Zhang Z, Sha Z D, Ding J, Greer A L, Ma E Proc. Natl. Acad. Sci. U.S.A. 122 e2427082122

    [28]

    Luo Q, Cui W R, Zhang H P, Li L L, Shao L L, Cai M J, Zhang Z G, Xue L, Shen J, Gong Y, Li X D, Li M Z, Shen B L 2023 Mater. Futures 2 025001Google Scholar

    [29]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, Popel P 2009 Philos. Mag. 89 967Google Scholar

    [30]

    Sadigh B, Erhart P 2012 Phys. Rev. B 86 134204Google Scholar

    [31]

    Maloney C E, Lemaître A 2006 Phys. Rev. E 74 016118Google Scholar

    [32]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [33]

    Barlow H J, Cochran J O, Fielding S M 2020 Phys. Rev. Lett. 125 168003Google Scholar

    [34]

    Cui S H, Liu H S, Peng H L 2022 Phys. Rev. E 106 014607Google Scholar

    [35]

    Dasgupta R, Mishra P, Procaccia I, Samwer K 2013 Appl. Phys. Lett. 102 191904Google Scholar

    [36]

    Liu Y, Liu H S, Peng H L 2023 J. Non-Cryst. Solids 601 122052Google Scholar

    [37]

    Liu Y, Yan Z H, Liu H S, Shang B S, Peng H L 2024 Phys. Rev. B 109 054115

    [38]

    李茂枝 2017 物理学报 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [39]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [40]

    Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376Google Scholar

    [41]

    Tang X C, Deng J R, Meng L Y, Yao X H 2025 Int. J. Plast. 189 104323Google Scholar

  • [1] 王建峰, 史禄鑫, 费婷, 白延文, 胡丽娜. FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制. 物理学报, doi: 10.7498/aps.74.20250889
    [2] 丁华平, 刘李晨, 邵里良, 周靖, 左定荣, 柯海波, 汪卫华. 序调控工程创制高频非晶基软磁材料研究进展. 物理学报, doi: 10.7498/aps.74.20250585
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [4] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, doi: 10.7498/aps.66.176404
    [5] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, doi: 10.7498/aps.66.176402
    [6] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, doi: 10.7498/aps.66.176403
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.227101
    [8] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, doi: 10.7498/aps.65.036804
    [9] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, doi: 10.7498/aps.63.076501
    [10] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, doi: 10.7498/aps.62.017101
    [11] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, doi: 10.7498/aps.61.200207
    [12] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, doi: 10.7498/aps.61.093602
    [13] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.168103
    [14] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, doi: 10.7498/aps.61.136401
    [15] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, doi: 10.7498/aps.60.034502
    [16] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.106601
    [17] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究. 物理学报, doi: 10.7498/aps.58.6408
    [18] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, doi: 10.7498/aps.58.5604
    [19] 刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强. TiAl/Ti3Al体系剪切变形的分子动力学研究. 物理学报, doi: 10.7498/aps.58.246
    [20] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟. 物理学报, doi: 10.7498/aps.57.5159
计量
  • 文章访问数:  427
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回