搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

判定金属玻璃微观结构中的二十面体类团簇

郭古青 吴诗阳 蔡光博 杨亮

引用本文:
Citation:

判定金属玻璃微观结构中的二十面体类团簇

郭古青, 吴诗阳, 蔡光博, 杨亮

Identifying icosahedron-like clusters in metallic glasses

Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang
PDF
导出引用
  • 基于Voronoi几何分形法, 分析了理想二十面体团簇和ZrCu二元金属玻璃中各种团簇的结构特点, 提出了一种判定金属玻璃原子结构中二十面体类团簇的方法. 并选取三个ZrCu 非晶成分作为研究对象, 基于Voronoi团簇, 利用该方法提取了各种构型团簇, 证实其中四种构型团簇的基本几何结构与理想二十面体相似, 并具有同样近似于理想二十面体的高致密度、高规则度和高五次对称性, 因此可称之为二十面体类团簇. 此类二十面体类团簇可作为金属玻璃的主要结构单元, 普遍存在于非晶结构中; 二十面体类团簇及其连接能包含几乎所有的原子, 从而形成非晶结构. 研究结果提供了一种新的团簇判定方法, 有助于从微观结构层面分析合金中的非晶形成机理.
    Since the discovery of the first metallic glass (MG) with the composition of Au75Si25 in 1960, vast efforts have been devoted to understanding the mechanisms of glass formation in metals, because this class of glassy alloy usually possesses unique properties that may have the potential application as engineering material. As is well known, structure determines properties of material. Therefore, understanding the glass formation of MG from the structural perspective is helpful for guiding researchers in developing more MGs. So far, icosahedral clusters are regarded as the preferred clusters contributing to the formation of amorphous structure due to its five-fold symmetrical feature and high atomic packing. However, it has been found that an ideal icosahedron usually does not have a high concentration in many MG compositions. Thus, we wonder whether icosahedral clusters are popular in microstructures of amorphous alloys. In this work, a feasible scheme for identifying the icosahedron-like clusters in MGs is developed to address this issue. It is found that icosahedron-like clusters are popular structural units in amorphous structure indeed, contributing to the glass formation in alloy. A projection method of reflecting the styles of shell-atom connections in Voronoi-tessellation indexed clusters is developed in detail, so that all clusters can be further geometrically indexed as different projected types of polyhedra. It is revealed that there are three kinds of clusters (0, 2, 8, 1, 0, 2, 8, 2 I-type, and 0, 1, 10, 2) which have the most similar geometrical features to that of the so-called ideal icosahedron, 0, 0, 12, 0. Therefore, besides the ideal icosahedron, these three types of clusters can be regarded as the icosahedron-like clusters. The ideal icoshahedron (0, 0, 12, 0) has a coordination number (i.e., the number of shell atoms) of 12, while these three icosahedron-like clusters have coordination numbers ranging from 11 to 13, so that structural balance between the geometrical atomic stacking and the chemical interactions among various elements in MGs (especially multicomponent MGs) is more easy to achieve. Furthermore, structural models of three selected ZrCu compositions are studied, which are obtained by systematic experimental measurements combined with reverse Monte Carlo simulation. It is found that both the icosahedron-like cluster and the ideal icosahedron have the similar values of some structural parameters, in terms of high atomic packing efficiency, high cluster regularity, fruitful five-fold symmetrical feature, etc. In addition, it is revealed that these ideal icosahedra and icosahedron-like clusters can contain almost all the atoms in these structural models, enhancing the space filling efficiency. In conclusion, these identified icosahedron-like clusters should be the popular building blocks, contributing to the glass formation in alloy. This work provides an insight into the glass formation in alloy from the cluster-level structural angle and will shed light on developing more MGs.
      通信作者: 杨亮, yangliang@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1332112, 51471088)、中央高校基本科研业务费专项资金(批准号: NE2015004)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ12-08)、 江苏省研究生培养创新工程项目(批准号: CXLX13_152)和江苏高校优势学科建设工程资助的课题.
      Corresponding author: Yang Liang, yangliang@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332112, 51471088), the Fundamental Research Funds for the Central Universities, China (Grant No. NE2015004), the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ12-08), the Funding of Jiangsu Innovation Program for Graduate Education, China (Grant No. CXLX13-152), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions are gratefully acknowledged, China.
    [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Wu Z W, Li M Z, Wang W H, Liu K X 2014 Nat. Commun. 6 6035

    [3]

    Wu F F, Yu P, Bian X L, Tan J, Wang J G, Wang G 2014 Acta Phys. Sin. 63 058101 (in Chinese) [吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚 2014 物理学报 63 058101]

    [4]

    Hu Y, Yan H H, Lin T, Li J F, Zhou Y H 2012 Acta Phys. Sin. 61 087102 (in Chinese) [胡勇, 闫红红, 林涛, 李金富, 周尧和 2012 物理学报 61 087102]

    [5]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [6]

    Miracle D B 2004 Nat. Mater. 3 697

    [7]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [8]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 075507

    [9]

    Schenk T, Holland M D, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 155501

    [10]

    Wakeda M, Shibutani Y 2010 Acta Mater. 58 3963

    [11]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Finney J L 1977 Nature 266 309

    [14]

    Finney J L 1970 Proc. R. Soc. Ser. A 319 479

    [15]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [16]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [17]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [18]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502

    [19]

    Wang S Y, Kramer M J, Xu M, Wu S, Hao S G, Sordelet D J, Ho K M, Wang C Z 2009 Phys. Rev. B 79 144205

    [20]

    Hao S G, Wang C Z, Kramer M J, Ho K M 2010 J. Appl. Phys. 107 053511

    [21]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [22]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [23]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [24]

    Ding J, Cheng Y Q, Ma E 2014 Acta Mater. 69 343

    [25]

    Ward L, Miracle D, Windl W, Senkov O N, Flores K 2013 Phys. Rev. B 88 134205

    [26]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scripta Mater. 63 879

    [27]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [28]

    https://en.wikipedia.org/wiki/Stereographic_projection# References [2015-10-19]

    [29]

    Miracle D B 2006 Acta Mater. 54 4317

    [30]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [31]

    Yang L, Xia J H, Wang Q, Dong C, Chen, L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R, Gerward L 2006 Appl. Phys. Lett. 88 241913

    [32]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2006 Appl. Phys. Lett. 88 1

    [33]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

  • [1] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [2] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [3] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [4] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [5] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [6] 何长春, 廖继海, 杨小宝. 平面团簇稳定结构的蒙特卡罗树搜索. 物理学报, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [7] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算. 物理学报, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [8] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [9] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [10] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [11] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [12] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [13] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [14] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [15] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [16] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [17] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [18] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [19] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [20] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究. 物理学报, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
计量
  • 文章访问数:  6915
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-19
  • 修回日期:  2016-02-06
  • 刊出日期:  2016-05-05

/

返回文章
返回