搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面团簇稳定结构的蒙特卡罗树搜索

何长春 廖继海 杨小宝

引用本文:
Citation:

平面团簇稳定结构的蒙特卡罗树搜索

何长春, 廖继海, 杨小宝

Monte-Carlo tree search for stable structures of planar clusters

He Chang-Chun, Liao Ji-Hai, Yang Xiao-Bao
PDF
导出引用
  • 以平面团簇为例提出了一种结合结构识别和蒙特卡罗树技术搜索稳定结构的新方法.体系原子之间的相互作用由两类模型势能函数来描述:Lennard-Jones二体势函数与基于Lennard-Jones势的三体势函数.考虑可能的三角晶格碎片作为候选结构,引入编号策略对结构进行快速识别,并运用蒙特卡罗树搜索研究稳定结构随着原子数增大的演化过程;对于能量较低的候选结构,进一步采取局域优化来获得对应体系的稳定结构.计算表明,Lennard-Jones二体势函数对应的三角晶格团簇更稳定;在特定的参数下,三体势函数对应的六角晶格团簇更稳定.结合结构识别和蒙特卡罗树搜索可以对候选结构空间进行高效扫描,在较短时间内更容易搜索到稳定的团簇结构,并可以与第一原理计算结合实现材料的结构预测.
    Illustrated by the case of the planar clusters, we propose a new method to search the possible stable structures by combining the structural identification and Monte-Carlo tree algorithm. We adopt two kinds of model-potential to describe the interaction between atoms:the pair interaction of Lennard-Jones potential and three-body interaction based on the Lennard-Jones potential. Taking the possible triangular lattice fragment as candidates, we introduce a new nomenclature to distinguish the structures, which can be used for the rapid congruence check. 1) We label the atoms on the triangular lattice according to the distances and the polar angles. where a given triangular structure has a corresponding serial number in the numbered plane. Note that the congruent structures can have a group of possible serial numbers. 2) We consider all the possible symmetrical operations including translation, inversion and rotation, and obtain the smallest one for the unique nomenclature of the structure. In conventional search of magic clusters, the global optimizations are performed for the structures with given number of atoms. Herein, we perform the Monte-Carlo tree search to study the evolution of stable structures with various numbers of atoms. From the structures of given number of atoms, we sample the structures according to their energy with the importance sampling, and then expand the structures to the structures with one more atom, where the congruence check with the nomenclature is adopted to avoid numerous repeated evaluations of candidates. Since the structures various numbers of atoms are correlated with each other, a searching tree will be obtained. In order to prevent the over-expansion of branches, we prove the “tree” according to energy to make the tree asymmetric growth to retain the low energy structure. The width and depth of search is balanced by the control of temperature in the Monte-Carlo tree search. For the candidates with lower energies, we further perform the local optimization to obtain the more stable structures. Our calculations show that the triangular lattice fragments will be more stable under the pair interaction of Lennard-Jones potential, which are in agreement with the previous studies. Under the three body interaction with the specific parameter, the hexagonal lattice fragments will be more stable, which are similar to the configurations of graphene nano-flakes. Combining the congruence check and Monte-Carlo tree search, we provide an effective avenue to screen the possible candidates and obtain the stable structures in a shorter period of time compared with the common global optimizations without the structural identification, which can be extended to search the stable structure for materials by the first-principles calculations.
      通信作者: 杨小宝, scxbyang@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474100)和中央高校基本科研业务费(批准号:2017MS119)资助的课题.
      Corresponding author: Yang Xiao-Bao, scxbyang@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11474100) and the Fundamental Research Fund for the Central Universities,China (Grant No.2017MS119).
    [1]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371

    [2]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [3]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 33601

    [4]

    Zhang M, Gao Y, Fang H P 2016 Chin. Phys. B 25 13602

    [5]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [6]

    Knight W D, Clemenger K, Heer W A D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [8]

    Liu G Q, Zhang Y L, Wang Z X, Wang Y Z, Zhang X X, Zhang W X 2012 Comput. Theor. Chem. 993 118

    [9]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [10]

    Kim S, Hwang S W, Kim M K, Shin D Y, Shin D H, Kim C O, Yang S B, Park J H, Hwang E, Choi S H, Ko G, Sim S, Sone C, Choi H J, Bae S, Hong B H 2012 ACS Nano 6 8203

    [11]

    Dahl J E, Liu S G, Carlson R M K 2003 Science 299 96

    [12]

    Yang X B, Zhao Y J, Xu H, Yakobson B I 2011 Phys. Rev. B 83 205314

    [13]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349

    [14]

    Xu S G, Zhao Y J, Liao J H, Yang X B 2015 J. Chem. Phys. 142 214307

    [15]

    Hartke B 1993 J. Phys. Chem. 97 9973

    [16]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [17]

    Frontera C, Vives E, Castan T, Planes A 1995 Phys. Rev. B 51 11369

    [18]

    Kresse G, Jurgen H 1993 Phy. Rev. B 47 558

    [19]

    Zhang Y J, Xiao X Y, Li Y Q, Yan Y H 2012 Acta Phys. Sin. 61 093602 (in Chinese)[张英杰,肖绪洋,李永强, 颜云辉2012物理学报61 093602]

    [20]

    Liu T D, Li Z P, Ji Q S, Shao G F, Fan T E, Wen Y H 2017 Acta Phys. Sin. 66 053601 (in Chinese)[刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华2017物理学报 66 053601]

    [21]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese)[吴丽君, 随强涛, 张多, 张林, 祁阳2015物理学报64 042102]

    [22]

    Li P F, Zhang Y G, Lei X L, Pan B C 2013 Acta Phys. Sin. 62 143602 (in Chinese)[李鹏飞, 张艳革, 雷雪玲, 潘必才2013物理学报 62 143602]

    [23]

    L J, Wang Y C, Zhu L, Ma Y M 2012 J. Chem. Phys. 137 084104

    [24]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [25]

    Solovyov I A, Solovyov A V, Greiner W, Koshelev A, Shutovich A 2003 Phys. Rev. Lett. 90 053401

    [26]

    Swiechowski M, Mandziuk J, Ong Y S 2016 IEEE Trans. Comp. Intel. AI. 8 218

    [27]

    Villar S S, Bowden J, Wason J 2015 Stat. Sci. 30 199

    [28]

    Sasaki Y, de Garis H 2004 Proceedings of the 2003 Congress on Evolutionary Computation Canberra, ACT, Australia, December 8-12, 2003 p886

    [29]

    Yang J, Zhang W Q 2007 Acta Phys. Sin. 56 4017 (in Chinese)[杨炯, 张文清2007物理学报56 4017]

  • [1]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371

    [2]

    Gong X F, Wang Y, Ning X J 2008 Chin. Phys. Lett. 25 468

    [3]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 33601

    [4]

    Zhang M, Gao Y, Fang H P 2016 Chin. Phys. B 25 13602

    [5]

    de Heer W A 1993 Rev. Mod. Phys. 65 611

    [6]

    Knight W D, Clemenger K, Heer W A D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141

    [7]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [8]

    Liu G Q, Zhang Y L, Wang Z X, Wang Y Z, Zhang X X, Zhang W X 2012 Comput. Theor. Chem. 993 118

    [9]

    Li S F, Zhao X J, Xu X S, Gao Y F, Zhang Z Y 2013 Phys. Rev. Lett. 111 115501

    [10]

    Kim S, Hwang S W, Kim M K, Shin D Y, Shin D H, Kim C O, Yang S B, Park J H, Hwang E, Choi S H, Ko G, Sim S, Sone C, Choi H J, Bae S, Hong B H 2012 ACS Nano 6 8203

    [11]

    Dahl J E, Liu S G, Carlson R M K 2003 Science 299 96

    [12]

    Yang X B, Zhao Y J, Xu H, Yakobson B I 2011 Phys. Rev. B 83 205314

    [13]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349

    [14]

    Xu S G, Zhao Y J, Liao J H, Yang X B 2015 J. Chem. Phys. 142 214307

    [15]

    Hartke B 1993 J. Phys. Chem. 97 9973

    [16]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [17]

    Frontera C, Vives E, Castan T, Planes A 1995 Phys. Rev. B 51 11369

    [18]

    Kresse G, Jurgen H 1993 Phy. Rev. B 47 558

    [19]

    Zhang Y J, Xiao X Y, Li Y Q, Yan Y H 2012 Acta Phys. Sin. 61 093602 (in Chinese)[张英杰,肖绪洋,李永强, 颜云辉2012物理学报61 093602]

    [20]

    Liu T D, Li Z P, Ji Q S, Shao G F, Fan T E, Wen Y H 2017 Acta Phys. Sin. 66 053601 (in Chinese)[刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华2017物理学报 66 053601]

    [21]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese)[吴丽君, 随强涛, 张多, 张林, 祁阳2015物理学报64 042102]

    [22]

    Li P F, Zhang Y G, Lei X L, Pan B C 2013 Acta Phys. Sin. 62 143602 (in Chinese)[李鹏飞, 张艳革, 雷雪玲, 潘必才2013物理学报 62 143602]

    [23]

    L J, Wang Y C, Zhu L, Ma Y M 2012 J. Chem. Phys. 137 084104

    [24]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [25]

    Solovyov I A, Solovyov A V, Greiner W, Koshelev A, Shutovich A 2003 Phys. Rev. Lett. 90 053401

    [26]

    Swiechowski M, Mandziuk J, Ong Y S 2016 IEEE Trans. Comp. Intel. AI. 8 218

    [27]

    Villar S S, Bowden J, Wason J 2015 Stat. Sci. 30 199

    [28]

    Sasaki Y, de Garis H 2004 Proceedings of the 2003 Congress on Evolutionary Computation Canberra, ACT, Australia, December 8-12, 2003 p886

    [29]

    Yang J, Zhang W Q 2007 Acta Phys. Sin. 56 4017 (in Chinese)[杨炯, 张文清2007物理学报56 4017]

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀. 物理学报, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 李媛, 彭平. 非晶Ag晶化过程中不同类型晶核结构的识别与跟踪. 物理学报, 2019, 68(7): 076401. doi: 10.7498/aps.68.20182188
    [3] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算. 物理学报, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [4] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究. 物理学报, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [5] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [6] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [9] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [10] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [11] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [12] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [13] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [14] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [15] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [16] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究. 物理学报, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [17] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法. 物理学报, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [18] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [19] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [20] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究. 物理学报, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
计量
  • 文章访问数:  6075
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-07
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-08-05

/

返回文章
返回