-
基于相关一致基组aug-cc-pV5Z,采用内收缩多参考组态相互作用方法计算了BD+离子两个最低解离极限B+(1Sg)+D(2Sg)和B+(3Pu)+D(2Sg)对应的5个∧–S态(X2∑+,A2Π,B2∑+,a4Π和b4∑+)的势能曲线和跃迁偶极矩.根据计算结果,求解核运动的径向薛定谔方程得到相应电子态的振-转光谱常数、Franck-Condon(F-C)因子和振动能级辐射寿命.其中A2Π–X2∑+的F-C因子(f00=0.923)、辐射寿命(τ=235 ns)满足激光直接冷却的条件.因此,我们基于分子转动跃迁提出了一个可实现Doppler激光冷却的光循环方案:A2Π1/2(v'=0)–X2∑+(v"=0,1),其中v'=0中包含2个转动能级,v"=0和v"=1中分别包含6个和4个转动能级.根据方案,模拟了激光冷却过程中的分子布居数动力学变化过程,并计算了初速度为100 m/s的BD+,历经5.4 ms散射1150个光子可减速到4.6 m/s、温度为13 mK.
-
关键词:
- BD+离子 /
- 组态相互作用方法 /
- 光谱常数 /
- Doppler激光冷却
Based on consistent basis set aug-cc-pV5Z, five low-lying potential energy curves and transition dipole moments X2∑+, A2Π, B2∑+, a4Π and b4∑+ of BD+ are calculated by using internally contracted multi-reference configuration interaction approach. According to the calculation results, ro-vibrational levels of theses electronic states are derived through solving the radial Schrödinger equation ro-vibrational equation, and then the molecular parameters, Franck-Condon factors (FCFs) and radiation life are obtained by fitting and calculations. The FCFs (f00=0.923) and radiation life for v"=0 (τ=235 ns) of A2Π-X2∑+ are suitable for achieving rapid laser cooling. Therefore, an optical-cycle for Doppler laser cooling scheme is proposed:the system includes the A2Π1/2(v'=0)-X2∑+(v"=0, 1), where the case of v'=0 contains 2 rotational levels, the cases of v"=0 and v"=1 contain 6 and 4 rotational levels, respectively. According to the proposal, we simulate the dynamic process of the molecular population in laser cooling. The BD+ can be decelerated from initial velocity of 100 m/s to 4.6 m/s (13 mK) after scattering 1150 photons during 5.4 ms.-
Keywords:
- BD+ cation /
- MRCI /
- spectroscopic parameters /
- Doppler laser cooling
[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707
[3] Phillips W D 1998 Rev. Mod. Phys. 70 721
[4] DeMille D 2002 Phys. Rev. Lett. 88 067901
[5] Flambaum V V, Kozlov M G 2007 Phys. Rev. Lett. 99 150801
[6] Pupillo G, Micheli A, Bchler H P, Zoller P 2009 Cold Molecules:Theory, Experiment, Applications (Boca Raton:CRC Press)
[7] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[8] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001
[9] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
[10] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
[11] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003
[12] Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401
[13] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416
[14] Ji Z H, Zhang H S, Wu J Z, Yuan J P, Yang Y G, Zhao Y T, Ma J, Wang L R, Xiao L T, Jia S T 2012 Phys. Rev. A 85 013401
[15] Isaev T A, Hoekstra S, Berger R 2010 Phys. Rev. A 82 052521
[16] Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[17] Lane I C 2012 Phys. Chem. Chem. Phys. 14 15078
[18] Kang S Y, Gao Y F, Kuang F G, Gao T, Du J G, Jiang G 2015 Phys. Rev. A 91 042511
[19] Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900
[20] You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502
[21] You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Liu W W 2016 Phys. Chem. Chem. Phys. 18 19838
[22] Gao Y F, Gao T 2014 Phys. Rev. A 90 052506
[23] Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023
[24] Chin C, Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Denschlag J H, Grimm R 2004 International Quantum Electronics Conference. Optical Society of America:IMI3
[25] Galván A P, Zhao Y, Orozco L A, Gómez E, Lange A D, Baumer F, Sprouse G D 2007 Phys. Lett. B 655 114
[26] López-Urrutia J R C, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826
[27] Werner H J, Knowles P J, Knizia G, et al. 2012 Computat. Molec. Sci. 2 242
[28] Le Roy R J 2007 LEVEL 80:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)
[29] Zou W L, Liu W J 2005 J. Comput. Chem. 26 106
[30] Vogelius I S, Madsen L B, Drewsen M 2004 Phys. Rev. A 70 053412
[31] Ramsay D A, Sarre P J 1982 J. Chem. Soc. Faraday Trans. 2 781331
[32] Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559
[33] Huber K P, Herzberg G 2013 Molecular Spectra and Molecular Structure:IV Constants of Diatomic Molecules (Springer Science & Business Media) pp90-91
[34] Di Rosa M D 2004 Eur. Phys. J. D 31 395
-
[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707
[3] Phillips W D 1998 Rev. Mod. Phys. 70 721
[4] DeMille D 2002 Phys. Rev. Lett. 88 067901
[5] Flambaum V V, Kozlov M G 2007 Phys. Rev. Lett. 99 150801
[6] Pupillo G, Micheli A, Bchler H P, Zoller P 2009 Cold Molecules:Theory, Experiment, Applications (Boca Raton:CRC Press)
[7] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[8] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001
[9] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
[10] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
[11] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003
[12] Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401
[13] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416
[14] Ji Z H, Zhang H S, Wu J Z, Yuan J P, Yang Y G, Zhao Y T, Ma J, Wang L R, Xiao L T, Jia S T 2012 Phys. Rev. A 85 013401
[15] Isaev T A, Hoekstra S, Berger R 2010 Phys. Rev. A 82 052521
[16] Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[17] Lane I C 2012 Phys. Chem. Chem. Phys. 14 15078
[18] Kang S Y, Gao Y F, Kuang F G, Gao T, Du J G, Jiang G 2015 Phys. Rev. A 91 042511
[19] Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900
[20] You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502
[21] You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Liu W W 2016 Phys. Chem. Chem. Phys. 18 19838
[22] Gao Y F, Gao T 2014 Phys. Rev. A 90 052506
[23] Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023
[24] Chin C, Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Denschlag J H, Grimm R 2004 International Quantum Electronics Conference. Optical Society of America:IMI3
[25] Galván A P, Zhao Y, Orozco L A, Gómez E, Lange A D, Baumer F, Sprouse G D 2007 Phys. Lett. B 655 114
[26] López-Urrutia J R C, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826
[27] Werner H J, Knowles P J, Knizia G, et al. 2012 Computat. Molec. Sci. 2 242
[28] Le Roy R J 2007 LEVEL 80:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)
[29] Zou W L, Liu W J 2005 J. Comput. Chem. 26 106
[30] Vogelius I S, Madsen L B, Drewsen M 2004 Phys. Rev. A 70 053412
[31] Ramsay D A, Sarre P J 1982 J. Chem. Soc. Faraday Trans. 2 781331
[32] Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559
[33] Huber K P, Herzberg G 2013 Molecular Spectra and Molecular Structure:IV Constants of Diatomic Molecules (Springer Science & Business Media) pp90-91
[34] Di Rosa M D 2004 Eur. Phys. J. D 31 395
计量
- 文章访问数: 5410
- PDF下载量: 173
- 被引次数: 0