搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直气液两相流混沌吸引子单元面积分析

陈平 杜亚威 薛友林

引用本文:
Citation:

垂直气液两相流混沌吸引子单元面积分析

陈平, 杜亚威, 薛友林

Element area analysis of chaotic morphology of verical gas-liquid two-phase flow

Chen Ping, Du Ya-Wei, Xue You-Lin
PDF
导出引用
  • 为了充分反映吸引子结构随时间延迟的变化规律, 在现有吸引子形态描述方法基础上定义了吸引子单元面积, 通过仿真发现, 吸引子单元面积随时间延迟变化曲线第一个波峰的高度和时间延迟主要由信号中大幅值波动的数量、频率决定, 利用此规律对实验采集到的气液两相流电导波动信号进行分析, 发现在固定液相流量条件下, 改变气相流量会导致泡状流、段塞流和混状流中大幅值波动幅度的改变, 但相同流型信号中大幅值波动的频率比较接近. 将吸引子单元面积随时间延迟变化曲线第一个波峰的时间延迟和落差比作为特征量, 可以实现泡状流、段塞流、混状流的流型分类.
    In order to better understand the variation of flow structure with delay time, we propose the element area (EA) of attractor morphology parameter in this paper. First, the conductance fluctuating signals and adaptive optimal kernel time-frequency representations of different gas-liquid flows are shown, we can find that flow pattern evolution is always accompanied by the numerical and frequency changes of large amplitude fluctuation (LAF). Then three kinds of signals, i. e., rossler signal, white noise and sinusoidal signal with multi-components, are used for analyzing the simulations, and the results indicate that the greater the frequency of LAF, the smaller the delay time of first crest of EA( peak ) is, and that the more the LAF, the bigger the peak value of first crest of EA(hpeak) is. Additionally, we use the above rule to analyze the conductance fluctuating signals measured from upward gas-liquid two-phase flow experiments and the signal length is selected to be 10 s for analysis. When the water superficial velocity is fixed to be 0.1138 m/s and the gas superficial velocity is gradually increased, we find that the peak is constant and hpeak changes up and down at bubble flow. When the flow pattern evolves into bubble-slug transition flow, the peak begins to turn bigger, and when the flow pattern evolves into slug flow, the peak becomes constant again while the hpeak increases monotonically with the gas flow rate increasing. The peak begins to become smaller as the flow pattern evolves from slug flow into churn flow, and we can find that the peak and hpeak of transition flow are alike. The peak and hpeak of bubble flow and churn flow are also alike because their dynamical mechanisms are similar but the downward trend of bubble flow is more gently than that of churn flow. When the water superficial velocity is fixed to be 0.2719 m/s, we can find similar variations of peak and hpeak to the above. Finally we determine the fall ratio (Rf) which is the ratio of the difference between the first crest and the first trough of EA and the hpeak, and then quantitatively distinguish three typical flow patterns, i.e., bubble flow, slug flow and churn flow by the Rf - peak distribution.
      通信作者: 陈平, daoke4587@163.com
      Corresponding author: Chen Ping, daoke4587@163.com
    [1]

    Hewitt G F 1980 Measurement of Two-phase Flow Parameters (London: Academic Press)

    [2]

    Taitel Y, Barnea D, Dukler A E 1980 AICHEJ 26 345

    [3]

    Pao W K S, Lewis R W 2002 Comput. Methods Appl. Mech. Engrg. 191 2631

    [4]

    Padiala N T, VanderHeydena W B, Rauenzahna R M, Yarbrob S L 2000 Chem. Eng. Sci. 55 3261

    [5]

    Jones J O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Sun B, Wang E P, Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese) [孙斌, 王二朋, 郑永军 2011 物理学报 textbf60 014701]

    [8]

    Du M, Jin N D, Gao Z K, Wang Z Y, Zhai L S 2012 Int. J. Multiphase Flow 41 91

    [9]

    Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E, Yorke J A 1995 Phys. Rev. Lett. 75 2308

    [10]

    10 Gandhi A B, Joshi J B, Kulkarni A A, Jayaraman V K 2008 Int. J. Multiphase Flow 34 1099

    [11]

    Wang Z Y, Jin N D, Gao Z K, Zong Y B, Wang T 2010 Chem. Eng. Sci. 65 5226

    [12]

    Gao Z K, Zhang X W, Du M, Jin N D 2013 Phys. Lett. A 377 457

    [13]

    Llaur F X, Llop M F 2006 Int. J. Multiphase Flow 32 1397

    [14]

    Diks C, van Zwet W R, Takens F, DeGoede J 1996 Phys. Rev. E 53 2169

    [15]

    van Ommen J R, Coppens M O, van den Bleek C M, Schouten J C 2000 AIChE J. 46 2183

    [16]

    Nijenhuis J, Korbee R, Lensselink J, Kiel J H A, van Ommen J R 2007 Chem. Eng. Sci. 62 644

    [17]

    Bartels M, Nijenhuis J, Lensselink J, Siedlecki M, de Jong W, Kapteijin F, van Ommen J R 2009 Energy Fuels 23 157

    [18]

    Zhao J Ying, Jin N D, Gao Z K, Du M, Wang Z Y 2014 Chin. Phys. B 23 034702

    [19]

    Zheng G B, Jin N D, Wang Z Y, Hu N N 2008 J. Tianjin Univ. 41 919 (in Chinese) [郑桂波, 金宁德, 王振亚, 胡娜娜 2008 天津大学学报 41 919]

    [20]

    Zong Y B, Jin N D, Wang Z Y, Gao Z K, Wang C 2010 Int. J. Multiphase Flow 36 166

    [21]

    Zong Y B, Jin N D, Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese) [宗艳波, 金宁德, 王振亚 2009 物理学报 57 7544]

    [22]

    Llop M F, Jand N, Gallucci K, Llaur F X 2012 Chem. Engineer. Sci. 71 252

    [23]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer-Verlag) p366

    [24]

    Zheng G B 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [郑桂波 2009 博士学位论文 (天津: 天津大学)]

    [25]

    Rossler O E 1976 Phys. Lett. A 57 397

    [26]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 物理学报 53 2882]

  • [1]

    Hewitt G F 1980 Measurement of Two-phase Flow Parameters (London: Academic Press)

    [2]

    Taitel Y, Barnea D, Dukler A E 1980 AICHEJ 26 345

    [3]

    Pao W K S, Lewis R W 2002 Comput. Methods Appl. Mech. Engrg. 191 2631

    [4]

    Padiala N T, VanderHeydena W B, Rauenzahna R M, Yarbrob S L 2000 Chem. Eng. Sci. 55 3261

    [5]

    Jones J O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Sun B, Wang E P, Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese) [孙斌, 王二朋, 郑永军 2011 物理学报 textbf60 014701]

    [8]

    Du M, Jin N D, Gao Z K, Wang Z Y, Zhai L S 2012 Int. J. Multiphase Flow 41 91

    [9]

    Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E, Yorke J A 1995 Phys. Rev. Lett. 75 2308

    [10]

    10 Gandhi A B, Joshi J B, Kulkarni A A, Jayaraman V K 2008 Int. J. Multiphase Flow 34 1099

    [11]

    Wang Z Y, Jin N D, Gao Z K, Zong Y B, Wang T 2010 Chem. Eng. Sci. 65 5226

    [12]

    Gao Z K, Zhang X W, Du M, Jin N D 2013 Phys. Lett. A 377 457

    [13]

    Llaur F X, Llop M F 2006 Int. J. Multiphase Flow 32 1397

    [14]

    Diks C, van Zwet W R, Takens F, DeGoede J 1996 Phys. Rev. E 53 2169

    [15]

    van Ommen J R, Coppens M O, van den Bleek C M, Schouten J C 2000 AIChE J. 46 2183

    [16]

    Nijenhuis J, Korbee R, Lensselink J, Kiel J H A, van Ommen J R 2007 Chem. Eng. Sci. 62 644

    [17]

    Bartels M, Nijenhuis J, Lensselink J, Siedlecki M, de Jong W, Kapteijin F, van Ommen J R 2009 Energy Fuels 23 157

    [18]

    Zhao J Ying, Jin N D, Gao Z K, Du M, Wang Z Y 2014 Chin. Phys. B 23 034702

    [19]

    Zheng G B, Jin N D, Wang Z Y, Hu N N 2008 J. Tianjin Univ. 41 919 (in Chinese) [郑桂波, 金宁德, 王振亚, 胡娜娜 2008 天津大学学报 41 919]

    [20]

    Zong Y B, Jin N D, Wang Z Y, Gao Z K, Wang C 2010 Int. J. Multiphase Flow 36 166

    [21]

    Zong Y B, Jin N D, Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese) [宗艳波, 金宁德, 王振亚 2009 物理学报 57 7544]

    [22]

    Llop M F, Jand N, Gallucci K, Llaur F X 2012 Chem. Engineer. Sci. 71 252

    [23]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer-Verlag) p366

    [24]

    Zheng G B 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [郑桂波 2009 博士学位论文 (天津: 天津大学)]

    [25]

    Rossler O E 1976 Phys. Lett. A 57 397

    [26]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 物理学报 53 2882]

  • [1] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [2] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [3] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [4] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [5] 艾星星, 孙克辉, 贺少波. 不同类型混沌吸引子的复合. 物理学报, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [6] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征. 物理学报, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [7] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [8] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [9] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究. 物理学报, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [10] 包伯成, 康祝圣, 许建平, 胡文. 含指数项广义平方映射的分岔和吸引子. 物理学报, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [11] 胡国四. 超混沌吸引子的翼倍增方案. 物理学报, 2009, 58(12): 8139-8145. doi: 10.7498/aps.58.8139
    [12] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [13] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] 宗艳波, 金宁德, 王振亚, 王振华. 倾斜油水两相流流型混沌吸引子形态周界测度分析. 物理学报, 2009, 58(11): 7544-7551. doi: 10.7498/aps.58.7544
    [15] 谭司庭, 何 毅, 盛利元. 基于切延迟的椭圆反射腔的吸引子研究. 物理学报, 2008, 57(10): 6103-6111. doi: 10.7498/aps.57.6103
    [16] 王繁珍, 齐国元, 陈增强, 袁著祉. 一个四翼混沌吸引子. 物理学报, 2007, 56(6): 3137-3144. doi: 10.7498/aps.56.3137
    [17] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征. 物理学报, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [18] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [19] 郝建红, 李 伟. 混沌吸引子在两个周期振子耦合下的相同步. 物理学报, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
    [20] 王晓钢, 刘悦, 邱孝明. 非理想MHD流的奇异吸引子与混沌现象. 物理学报, 1988, 37(10): 1718-1728. doi: 10.7498/aps.37.1718
计量
  • 文章访问数:  5982
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-26
  • 修回日期:  2015-11-14
  • 刊出日期:  2016-02-05

/

返回文章
返回