搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气液两相流波动信号的时频谱分析研究

孙斌 王二朋 郑永军

引用本文:
Citation:

气液两相流波动信号的时频谱分析研究

孙斌, 王二朋, 郑永军

Time-frequency spectral analysis of gas-liquid two-phase flow’s fluctuations

Sun Bin, Wang Er-Peng, Zheng Yong-Jun
PDF
导出引用
  • 为了研究气液两相流不同流型的动态特性,通过小波变换、希尔伯特-黄变换及自适应最优核三种时频方法对气液两相流动态差压信号进行处理.通过对时频谱的分析,可以清晰看出当流型从泡状流向弹状流、塞状流的转化过程中,信号的主要能量由15—35 Hz之间的频带向0—8 Hz频带转移,在弹状流时出现了两个谱峰.实验结果表明:希尔伯特-黄变换及自适应最优核方法的时频分辨率比小波分析高.基于自适应最优核方法的脊信息的提取,克服了模糊平面加窗效应的影响,对气液两相流动态信号表现出更高的时频分辨率,并增强了时频平面信息的可读性.
    In order to study different flow patterns’ dynamic characteristics of gas-liquid two-phase flow, three time-frequency analysis methods are introduced to process the dynamic differential pressure signal of gas-liquid two-phase flow, such as the wavelet transform, Hilbert-Huang transform and adaptive optimal-kernel method. The results show that the main part of energy is transferred from frequency band 15—35 Hz to 0—8 Hz when the flow pattern changes from bubbly flow to slug flow and plug flow, and two spectrum peaks are observed at slug flow. The experimental results show that the time-frequency resolution of Hilbert-Huang transform and adaptive optimal-kernel is higher than that of wavelet transform. The extractions of ridge information based on adaptive optimal-kernel overcome the influence of fuzzy plane windowing effect, and enhance the readability of time-frequency plane information. The time-frequency analysis clearly shows the dynamic characteristics of different flow patterns, and describes the variation rules with time. It is helpful to further study the mechanism of gas-liquid two-phase flow.
    • 基金项目: 国家自然科学基金理论物理专项基金(批准号:10947154)和浙江省自然科学基金(批准号:Y1100842)资助的课题.
    [1]

    Dong F,Jin N D,Zong Y B,Wang Z Y 2008 Acta Phys. Sin. 57 6146 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 物理学报 57 6146 ]

    [2]

    Zheng G B, Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese) [郑桂波、金宁德 2009 物理学报 58 4485 ]

    [3]

    Lao L Y, Zhang H J, Zhang M 1996 Application of signal processing technology to achieve two-phase flow parameter detection-Progress in Multiphase Flow Measurement Technology (Beijing: Petroleum Industry Press) pp 103—109 (in Chinese) [劳力云、张宏建、张 鸣 1996应用信号处理技术实现两相流参数检测—多相流检测技术进展(北京:石油工业出版社)第103—109页 ]

    [4]

    Jones O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [5]

    Vince M A, Lahey R T 1982 Int. J. Multiphase Flow 8 93

    [6]

    Tutu N K 1982 Int. J. Multiphase Flow 8 443

    [7]

    Matsui G 1986 Nucl. Eng. Des. 95 221

    [8]

    Chen G, Huang Z Y, Wang B L 1999 Chin. J. Sci. Instrum. 20 117 (in Chinese) [陈 珙、黄志尧、王保良 1999仪器仪表学报 20 117 ]

    [9]

    Tan C, Dong F, Wu M M 2007 Flow Measurement and Instrumentation 18 5

    [10]

    Jin N D, He X F, Luo D 2006 Transducer and Microsystem Technology 25 29 (in Chinese) [金宁德、何晓飞、罗 彤2006传感器与微系统 25 29 ]

    [11]

    Peng Z K, Tse P W, Chu F L 2005 Mechanical Systems and Signal Processing 19 974

    [12]

    Sun B,Zhang H J 2007 Chin. J. Sens. Actuators 20 862 (in Chinese) [孙 斌、张宏建 2007传感技术学报 20 862 ]

    [13]

    Ding H, Huang Z Y, Song Z H, Yan Y 2007 Flow Measurement and Instrumentation 18 1

    [14]

    Sun B, Huang S Q, Zhou Y L, Guan Y B 2008 Chin. J. Sci. Instrum. 29 5 (in Chinese) [孙 斌、黄胜全、周云龙、关跃波 2008仪器仪表学报 29 5 ]

    [15]

    Zhang Y H,Jin G B,Li T Y 2006 Proc. CSEE 26 84 (in Chinese) [张宇辉、金国彬、李天云 2006中国电机工程学报 26 84 ]

    [16]

    Gong Z Q,Zou M W,Gao X Q,Dong W J 2005 Acta Phys. Sin. 54 3947 (in Chinese) [龚志强、邹明玮、高新全、董文杰 2005 物理学报 54 3947 ]

  • [1]

    Dong F,Jin N D,Zong Y B,Wang Z Y 2008 Acta Phys. Sin. 57 6146 (in Chinese) [董 芳、金宁德、宗艳波、王振亚 2008 物理学报 57 6146 ]

    [2]

    Zheng G B, Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese) [郑桂波、金宁德 2009 物理学报 58 4485 ]

    [3]

    Lao L Y, Zhang H J, Zhang M 1996 Application of signal processing technology to achieve two-phase flow parameter detection-Progress in Multiphase Flow Measurement Technology (Beijing: Petroleum Industry Press) pp 103—109 (in Chinese) [劳力云、张宏建、张 鸣 1996应用信号处理技术实现两相流参数检测—多相流检测技术进展(北京:石油工业出版社)第103—109页 ]

    [4]

    Jones O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [5]

    Vince M A, Lahey R T 1982 Int. J. Multiphase Flow 8 93

    [6]

    Tutu N K 1982 Int. J. Multiphase Flow 8 443

    [7]

    Matsui G 1986 Nucl. Eng. Des. 95 221

    [8]

    Chen G, Huang Z Y, Wang B L 1999 Chin. J. Sci. Instrum. 20 117 (in Chinese) [陈 珙、黄志尧、王保良 1999仪器仪表学报 20 117 ]

    [9]

    Tan C, Dong F, Wu M M 2007 Flow Measurement and Instrumentation 18 5

    [10]

    Jin N D, He X F, Luo D 2006 Transducer and Microsystem Technology 25 29 (in Chinese) [金宁德、何晓飞、罗 彤2006传感器与微系统 25 29 ]

    [11]

    Peng Z K, Tse P W, Chu F L 2005 Mechanical Systems and Signal Processing 19 974

    [12]

    Sun B,Zhang H J 2007 Chin. J. Sens. Actuators 20 862 (in Chinese) [孙 斌、张宏建 2007传感技术学报 20 862 ]

    [13]

    Ding H, Huang Z Y, Song Z H, Yan Y 2007 Flow Measurement and Instrumentation 18 1

    [14]

    Sun B, Huang S Q, Zhou Y L, Guan Y B 2008 Chin. J. Sci. Instrum. 29 5 (in Chinese) [孙 斌、黄胜全、周云龙、关跃波 2008仪器仪表学报 29 5 ]

    [15]

    Zhang Y H,Jin G B,Li T Y 2006 Proc. CSEE 26 84 (in Chinese) [张宇辉、金国彬、李天云 2006中国电机工程学报 26 84 ]

    [16]

    Gong Z Q,Zou M W,Gao X Q,Dong W J 2005 Acta Phys. Sin. 54 3947 (in Chinese) [龚志强、邹明玮、高新全、董文杰 2005 物理学报 54 3947 ]

  • [1] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [2] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [4] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [6] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [7] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析. 物理学报, 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [8] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征. 物理学报, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [9] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟. 物理学报, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [10] 杜萌, 金宁德, 高忠科, 朱雷, 王振亚. 油水两相流水包油流型多尺度排列熵分析. 物理学报, 2012, 61(23): 230507. doi: 10.7498/aps.61.230507
    [11] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [12] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [13] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] 宗艳波, 金宁德, 王振亚, 王振华. 倾斜油水两相流流型混沌吸引子形态周界测度分析. 物理学报, 2009, 58(11): 7544-7551. doi: 10.7498/aps.58.7544
    [15] 董 芳, 金宁德, 宗艳波, 王振亚. 两相流流型动力学特征多尺度递归定量分析. 物理学报, 2008, 57(10): 6145-6154. doi: 10.7498/aps.57.6145
    [16] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性. 物理学报, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [17] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [18] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征. 物理学报, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [19] 邓文基. 希尔伯特空间中的概率流和概率守恒. 物理学报, 2001, 50(8): 1425-1428. doi: 10.7498/aps.50.1425
    [20] 李志坚, 程建刚, 梁九卿. 有限维希尔伯特空间含时谐振子的时间演化及Berry相位. 物理学报, 2000, 49(1): 11-16. doi: 10.7498/aps.49.11
计量
  • 文章访问数:  9195
  • PDF下载量:  1121
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-30
  • 修回日期:  2010-05-28
  • 刊出日期:  2011-01-15

/

返回文章
返回