搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小管径气液两相流空隙率波传播的多尺度相关性

翟路生 金宁德

引用本文:
Citation:

小管径气液两相流空隙率波传播的多尺度相关性

翟路生, 金宁德

Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pipe

Zhai Lu-Sheng, Jin Ning-De
PDF
导出引用
  • 空隙率波是气液两相流系统的特殊物理现象, 理解空隙率波的传播特性对揭示两相流流型转变与流速测量物理机理具有重要意义. 本文首先考察了典型非线性系统的多尺度互相关特性, 发现去趋势互相关分析方法可有效揭示系统的多尺度非线性动力学特征; 然后, 通过采集垂直上升小管径气液两相流电导传感器阵列上下游空隙率波动数据, 提出采用多尺度去趋势互相关分析方法探测空隙率波传播的多尺度互相关特性, 并提取了低尺度空隙率波互相关水平增长率; 另外, 通过计算空隙率波空间衰减因子, 考察了气液两相流空隙率波传播的结构不稳定行为. 结果表明, 空隙率波结构的多尺度互相关特性与其空间衰减特性具有较好的物理关联性: 对于气液两相流过渡流型, 低尺度空隙率波互相关水平增长率较高, 且与较为稳定的空隙率波传播特性相对应; 而当气液两相流空隙率波明显衰减或放大时, 空隙率波互相关水平增长速率一般较低.
    The void fraction wave is a special physical phenomenon in a gas-liquid two-phase flow system. Understanding the propagation of the void fraction wave is of great significance for uncovering the physical mechanisms in both flow pattern transition and the fluid velocity measurement. In this study, detrended cross-correlation analysis (DCCA) is used to investigate the multi-scale cross-correlation characteristics of the coupled ARFIMA processes. It is found that the DCCA can effectively reveal the multi-scale cross-correlation dynamical behaviors of complex system. Then, we carry out the experimental test in a vertical gas-liquid two-phase flow pipe with small inner diameter. The DCCA is used to detect the cross-correlation characteristics of the void fraction wave on multiple time scales, and the growth rate of the cross-correlation level for the void fraction wave is observed on low time scales. Additionally, the spatial attenuation factor (SAF) of the void fraction wave is calculated to investigate the instability of the wave propagation. The SAF is close to zero under the transitional flow patterns, which means that the void fraction wave is in a stable propagating state. For bubble flows, the void fraction wave presents the attenuation characteristics, whilst the void fraction wave shows the amplification characteristics under the slug and churn flow patterns. Interestingly, the instability behaviors of the void fraction wave are always associated with its multi-scale cross-correlation characteristics. Specifically, the increasing rate of the wave cross-correlation level on low scales is much higher for transitional flow patterns, which is corresponding to the stable propagating characteristic of the void fraction wave. However, when the void fraction wave exhibits attenuation or amplification characteristics under other flow patterns, the increasing rate of the wave cross-correlation level on low scales is much lower.
      通信作者: 金宁德, ndjin@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41504104, 51527805, 11572220)、天津市自然科学基金(批准号: 14JCQNJC04200)和高等学校博士学科点专项科研基金(批准号: 20130032120042)资助的课题.
      Corresponding author: Jin Ning-De, ndjin@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41504104, 51527805, 11572220), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC04200), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130032120042).
    [1]

    Liu L, Zhou F D, Li H X 1998 Adv. Mech. 28 227 (in Chinese) [刘磊, 周芳德, 李会雄 1998 力学进展 28 227]

    [2]

    Huang F, Zhang X M, Guo L J 2005 Prog. Nat. Sci. 15 459 (in Chinese) [黄飞, 张西民, 郭烈锦 2005 自然科学进展 15 459]

    [3]

    Bai B F, Huang F, Guo L J, Wang X Y 2005 Nucl. Power Eng. 26 323 (in Chinese) [白博峰, 黄飞, 郭烈锦, 王先元 2005 核动力工程 26 323]

    [4]

    Boure J A, Mercadier Y 1982 Appl. Sci. Re. 38 297

    [5]

    Matuszkiewicz A, Flamand J C, Boure J A 1987 Int. J. Multiphase Flow 13 199

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Kytmaa H K, Brennen C E 1991 Int. J. Multiphase Flow 17 13

    [8]

    Lucas G P, Walton I C 1997 Flow Meas. Instrum. 8 133

    [9]

    Lucas G P, Jin N D 2001 Meas. Sci. Technol. 12 1529

    [10]

    Sun B J, Yan D C 2000 Acta Sci. Nat. Univ. Pekinensis 36 381 (in Chinese) [孙宝江, 颜大椿 2000 北京大学学报(自然科学版) 36 381]

    [11]

    Sun B J, Wang R H, Zhao X X, Gao Y H 2004 J. Hydrodyn. 19 246 (in Chinese) [孙宝江, 王瑞和, 赵欣欣, 高永海 2004 水动力学研究与进展 19 246]

    [12]

    Espinosa-Paredes G, Cazarez-Candia O, Garcia-Gutierrez A 2002 Ann. Nucl. Energy 29 1261

    [13]

    Jin N D, Nie X B, Wang J, Ren Y Y 2003 Flow Meas. Instrum. 14 177

    [14]

    Ami T, Umekawa H, Ozawa M, Shoji M 2009 Int. J. Heat Mass Transfer 52 5682

    [15]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese) [姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704]

    [16]

    Xiang Z T, Chen Y F, Li Y J, Xiong L 2014 Acta Phys. Sin. 63 038903 (in Chinese) [向郑涛, 陈宇峰, 李昱瑾, 熊励 2014 物理学报 63 038903]

    [17]

    Dou F X, Jin N D, Fan C L, Gao Z K, Sun B 2014 Chin. Phys. B 23 120502

    [18]

    Gou J, Liu J Y, Wei Z B, Taylor G, Liu Y B 2014 Acta Phys. Sin. 63 208402 (in Chinese) [苟竞, 刘俊勇, 魏震波, Taylor G, 刘友波 2014 物理学报 63 208402]

    [19]

    Hao Q Y, Jin N D, Han Y F, Gao Z K, Zhai L S 2014 Chin. Phys. Lett. 31 120501

    [20]

    Zhang M N, Li Z H, Chen X Y, Liu C X, Teng S Y, Cheng C F 2013 Chin. Phys. Lett. 30 044210

    [21]

    Jiang N, Zhang J 2005 Chin. Phys. Lett. 22 1968

    [22]

    Han J, Jiang N 2008 Chin. Phys. Lett. 25 1731

    [23]

    Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702

    [24]

    Podobnik B, Stanley H E 2008 Phys. Rev. Lett. 100 084102

    [25]

    Horvatic D, Stanley H E, Podobnik B 2011 Europhys. Lett. 94 18007

    [26]

    Zebende G F 2011 Physica A 390 614

    [27]

    Vassoler R T, Zebende G F 2012 Physica A 391 2438

    [28]

    Zebende G F, da Silva M F, Filho A M 2013 Physica A 392 1756

    [29]

    Yuan N M, Fu Z 2014 Physica A 400 71

    [30]

    Cao G X, Han Y, Chen Y M, Yang C X 2014 Mod. Phys. Lett. B 28 1450090

    [31]

    de Silva M F, Pereira E J D A L, Filho A M D S, de Castro A P N, Miranda J G V, Zebende G F 2015 Physica A 424 124

    [32]

    Hajipour Sardouie S, Shamsollahi M B, Albera L, Merlet I 2015 IRBM 36 20

    [33]

    Zhai L S, Jin N D, Gao Z K, Chen P, Chi H 2011 MAPAN-J. Metrol. Soc. I. 26 255

    [34]

    Peng C K, Havlin S, Stanley H E, Goldberger A L 1995 Chaos 5 82

    [35]

    Hosking J 1981 Biometrica 68 165

    [36]

    Zhai L S, Jin N D, Zong Y B, Wang Z Y, Gu M 2012 Meas. Sci. Technol. 23 025304

    [37]

    Lucas G P, Mishra R 2005 Meas. Sci. Technol. 16 749

  • [1]

    Liu L, Zhou F D, Li H X 1998 Adv. Mech. 28 227 (in Chinese) [刘磊, 周芳德, 李会雄 1998 力学进展 28 227]

    [2]

    Huang F, Zhang X M, Guo L J 2005 Prog. Nat. Sci. 15 459 (in Chinese) [黄飞, 张西民, 郭烈锦 2005 自然科学进展 15 459]

    [3]

    Bai B F, Huang F, Guo L J, Wang X Y 2005 Nucl. Power Eng. 26 323 (in Chinese) [白博峰, 黄飞, 郭烈锦, 王先元 2005 核动力工程 26 323]

    [4]

    Boure J A, Mercadier Y 1982 Appl. Sci. Re. 38 297

    [5]

    Matuszkiewicz A, Flamand J C, Boure J A 1987 Int. J. Multiphase Flow 13 199

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Kytmaa H K, Brennen C E 1991 Int. J. Multiphase Flow 17 13

    [8]

    Lucas G P, Walton I C 1997 Flow Meas. Instrum. 8 133

    [9]

    Lucas G P, Jin N D 2001 Meas. Sci. Technol. 12 1529

    [10]

    Sun B J, Yan D C 2000 Acta Sci. Nat. Univ. Pekinensis 36 381 (in Chinese) [孙宝江, 颜大椿 2000 北京大学学报(自然科学版) 36 381]

    [11]

    Sun B J, Wang R H, Zhao X X, Gao Y H 2004 J. Hydrodyn. 19 246 (in Chinese) [孙宝江, 王瑞和, 赵欣欣, 高永海 2004 水动力学研究与进展 19 246]

    [12]

    Espinosa-Paredes G, Cazarez-Candia O, Garcia-Gutierrez A 2002 Ann. Nucl. Energy 29 1261

    [13]

    Jin N D, Nie X B, Wang J, Ren Y Y 2003 Flow Meas. Instrum. 14 177

    [14]

    Ami T, Umekawa H, Ozawa M, Shoji M 2009 Int. J. Heat Mass Transfer 52 5682

    [15]

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704 (in Chinese) [姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704]

    [16]

    Xiang Z T, Chen Y F, Li Y J, Xiong L 2014 Acta Phys. Sin. 63 038903 (in Chinese) [向郑涛, 陈宇峰, 李昱瑾, 熊励 2014 物理学报 63 038903]

    [17]

    Dou F X, Jin N D, Fan C L, Gao Z K, Sun B 2014 Chin. Phys. B 23 120502

    [18]

    Gou J, Liu J Y, Wei Z B, Taylor G, Liu Y B 2014 Acta Phys. Sin. 63 208402 (in Chinese) [苟竞, 刘俊勇, 魏震波, Taylor G, 刘友波 2014 物理学报 63 208402]

    [19]

    Hao Q Y, Jin N D, Han Y F, Gao Z K, Zhai L S 2014 Chin. Phys. Lett. 31 120501

    [20]

    Zhang M N, Li Z H, Chen X Y, Liu C X, Teng S Y, Cheng C F 2013 Chin. Phys. Lett. 30 044210

    [21]

    Jiang N, Zhang J 2005 Chin. Phys. Lett. 22 1968

    [22]

    Han J, Jiang N 2008 Chin. Phys. Lett. 25 1731

    [23]

    Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702

    [24]

    Podobnik B, Stanley H E 2008 Phys. Rev. Lett. 100 084102

    [25]

    Horvatic D, Stanley H E, Podobnik B 2011 Europhys. Lett. 94 18007

    [26]

    Zebende G F 2011 Physica A 390 614

    [27]

    Vassoler R T, Zebende G F 2012 Physica A 391 2438

    [28]

    Zebende G F, da Silva M F, Filho A M 2013 Physica A 392 1756

    [29]

    Yuan N M, Fu Z 2014 Physica A 400 71

    [30]

    Cao G X, Han Y, Chen Y M, Yang C X 2014 Mod. Phys. Lett. B 28 1450090

    [31]

    de Silva M F, Pereira E J D A L, Filho A M D S, de Castro A P N, Miranda J G V, Zebende G F 2015 Physica A 424 124

    [32]

    Hajipour Sardouie S, Shamsollahi M B, Albera L, Merlet I 2015 IRBM 36 20

    [33]

    Zhai L S, Jin N D, Gao Z K, Chen P, Chi H 2011 MAPAN-J. Metrol. Soc. I. 26 255

    [34]

    Peng C K, Havlin S, Stanley H E, Goldberger A L 1995 Chaos 5 82

    [35]

    Hosking J 1981 Biometrica 68 165

    [36]

    Zhai L S, Jin N D, Zong Y B, Wang Z Y, Gu M 2012 Meas. Sci. Technol. 23 025304

    [37]

    Lucas G P, Mishra R 2005 Meas. Sci. Technol. 16 749

  • [1] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [2] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [3] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [4] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [5] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析. 物理学报, 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [6] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [7] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [8] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [9] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [10] 王振宇, 唐昌建. 离子通道摇摆电子束流激发的纵向慢波不稳定性. 物理学报, 2011, 60(5): 055204. doi: 10.7498/aps.60.055204
    [11] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究. 物理学报, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [12] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [13] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [14] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征. 物理学报, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [15] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据. 物理学报, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [16] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式. 物理学报, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [17] 黄朝松, 李均, M. C. KELLEY. 电离层等离子体交换不稳定性与大气重力波的耦合. 物理学报, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] 陆全康. 关于等离子体的电磁波不稳定性(Ⅱ). 物理学报, 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
    [19] 石长和. 等离子射流的磁流不稳定性. 物理学报, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
    [20] 陆全康. 关于等离子体的电磁波不稳定性. 物理学报, 1964, 20(4): 289-296. doi: 10.7498/aps.20.289
计量
  • 文章访问数:  6382
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-18
  • 修回日期:  2015-10-11
  • 刊出日期:  2016-01-05

/

返回文章
返回