搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统一流体模型的微放电数值仿真研究

王震 赵志航 付洋洋

引用本文:
Citation:

基于统一流体模型的微放电数值仿真研究

王震, 赵志航, 付洋洋

Numerical simulation study on microdischarge via a unified fluid model

Wang Zhen, Zhao Zhi-Hang, Fu Yang-Yang
PDF
导出引用
  • 数值仿真技术已发展成为气体放电领域的重要研究手段,常用于研究揭示某一具体放电形式的微观物理过程。本文介绍了气体放电的统一流体模型,包括粒子的连续性方程、能量守恒方程及泊松方程,考虑阴极电子发射(二次电子、热电子发射)、反应焓变与气体加热、阴极热传导等基本过程,可模拟得到包含盖革-米勒(Geiger-Müller)放电、汤森(Townsend)放电、辉光放电、电弧放电等各区域的完整伏安特性曲线。基于该模型,仿真得到的气体放电伏安特性曲线与已有文献结果一致,验证了该模型的正确性。在此基础上,对间距为400 μ m、气压分别为 50 Torr和500 Torr的放电过程进行了具体研究,对比分析了不同气压条件下放电典型参量的分布特性。该模型实现了广域参数范围条件下的气体放电数值仿真,拓展了气体放电流体模型的应用范围,促进了对放电参数特性的系统性分析。
    Numerical simulation has become an indispensable tool in the study of gas discharge. However, it is typically employed to reveal microscopic properties in a discharge under specific conditions. In this work, a unified fluid model for discharge simulation is introduced in detail. The model includes the continuity equation, the energy conservation equation of the species (electrons and heavy particles), and Poisson's equation. The model takes into account processes such as cathode electron emission (secondary electron emission and thermal emission), reaction enthalpy change, gas heating, and cathode heat conduction. The full CVC curve encompasses a range of discharge regimes, such as the Geiger-Muller regime, Townsend discharge, subnormal glow discharge, normal glow discharge, abnormal glow discharge, and arc discharge. The obtained CVC curve is consistent with the results in the literature, confirming the validity of the unified fluid model. On this basis, the CVC curves are obtained at a wide range of pressures (50 Torr-3000 Torr) conditions. Simulation studies are conducted with a focus on the discharge characteristics for microgap of 400 μm and at pressures of 50 Torr and 500 Torr, respectively. The distributions of typical discharge parameters under different pressure conditions are analyzed by comparison. The results indicate that the electric field in the discharge gap is uniform in the Townsend discharge regime, and the space charge effect can be ignored. The cathode fall and the quasi-neutral regions appear in the glow discharge, and the space charge effect is significant. In particular, the electric field reversal occurs in the abnormal discharge regime due to the heightened particle density gradient. The electron density reaches approximately 1022 m-3 in the arc discharge regime dominated by thermal emission and thermal ionization, as the increase of the current density. The gas temperature peak is 11850 K when the pressure is 500 Torr, and the cathode surface temperature is heated to 400 K due to heat conduction. The present model can realize the simulation of gas discharge across a wide range of condition parameter regimes, which promotes and expands the application of fluid models and aids in achieving a more comprehensive investigation of discharge parameter properties.
  • [1]

    Hara K, Hanquist K 2018 Plasma Sources Sci. Technol. 27 065004

    [2]

    Campanell M D, Johnson G R 2019 Phys. Rev. Lett. 122 015003

    [3]

    Nanbu K 1980 J. Phys. Soc. Jpn. 49 2042

    [4]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [5]

    Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B, Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017

    [6]

    Petrović Z L, Škoro N, Marić D, Mahony C M O, Maguire P D, Radmilović-Rađenović M, Malović G 2008 J. Phys. D: Appl. Phys. 41 194002

    [7]

    Yang D, Wang H H, Zheng B C, Zou X B, Wang X X, Fu Y Y 2023 Phys. Plasmas 30 063510

    [8]

    Yang D, Wang H H, Zheng B C, Liu Z G, Fu Y Y 2023 Plasma Sources Sci. Technol. 32 10LT01

    [9]

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206. (in Chinese) [付洋洋,罗海云,邹晓兵,王强,王新新 2014 物理学报 63 9]

    [10]

    Zhao Z H, Wei X L, Guan R Y, Nie H Y, Zhu B, Yao Y H 2022 IEEE Trans. Plasma Sci. 50 2333

    [11]

    Zhang X N, Li H P, Murphy A B, Xia W S 2013 High Voltage Eng. 39 1640. (in Chinese) [张晓宁,李和平, A. B. Murphy,夏维生 2013 高电压技术 39 7]

    [12]

    Surendra M, Graves D B, Jellum G M 1990 Phys. Rev. A 41 1112

    [13]

    Fiala A, Pitchford L C, Boeuf J P 1994 Phys. Rev. E 49 5607

    [14]

    Farouk T, Farouk B, Staack D, Gutsol A, Fridman A 2006 Plasma Sources Sci. Technol. 15 676

    [15]

    Bogaerts A, Gijbels R, Goedheer W J 1996 Anal. Chem. 68 2296

    [16]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [17]

    Chen S, Nobelen J, Nijdam S 2017 Plasma Sources Sci. Technol. 26 095005

    [18]

    Chen S, Li K, Nijdam S 2018 Plasma Sources Sci. Technol. 28 055017

    [19]

    Wang L, Chen S, Wang F 2019 Plasma Chem. Plasma Process. 39 1291

    [20]

    Liu F C, Guo X, Zhou Z X, He Y F, Fan W L 2019 Phys. Plasmas 26 123505

    [21]

    Marić D, Hartmann P, Malović G, Donkó Z, Petrović Z L 2003 J. Phys. D: Appl. Phys. 36 2639

    [22]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007

    [23]

    Wu Y, Zhu Y F, Cui W, Jia M, Li Y H 2015 Plasma Processes Polym. 12 642

    [24]

    Chen X C, Zhu Y F, Wu Y, Su Z, Liang H 2020 Plasma Processes Polym. 53 465202

    [25]

    Babaeva N Y, Kushner M J 2009 J. Phys. D: Appl. Phys. 42 132003

    [26]

    Babaeva N Y, Naidis G V 2016 Phys. Plasmas 23 083527

    [27]

    Nijdam S, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 103001

    [28]

    Luque A, Ratushnaya V, Ebert U 2008 J. Phys. D: Appl. Phys. 41 234005

    [29]

    Yan W, Economou D J 2017 J. Phys. D: Appl. Phys. 50 415205

    [30]

    Jiang Y Y, Wang Y H, Zhang J, Wang D Z 2022 J. Phys. D: Appl. Phys. 55 335203

    [31]

    Kolobov V I, Fiala A 1994 Phys. Rev. E 50 3018

    [32]

    Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986

    [33]

    Eliseev S I, Kudryavtsev A A, Liu H, Ning Z X, Yu D R, Chirtsov A S 2016 IEEE Trans. Plasma Sci. 44 2536

    [34]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 112 254102

    [35]

    Fu Y Y, Zhang P, Krek J, Verboncoeur J P 2019 Appl. Phys. Lett. 114 014102

    [36]

    Fu Y Y, Wang H H, Zheng B C, Zhang P, Fan Q H, Wang X X, Verboncoeur J P 2021 Appl. Phys. Lett. 118 401

    [37]

    Fu Y Y, Krek J, Zhang P, Verboncoeur J P 2018 IEEE Trans. Plasma Sci. 47 2011

    [38]

    Chen J D, Verboncoeur J P, Fu Y Y 2022 Appl. Phys. Lett. 121 074102

    [39]

    Baeva M, Loffhagen D, Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 1359

    [40]

    Baeva M, Loffhagen D, Becker M M, Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 949

    [41]

    Baeva M, Uhrlandt D, Loffhagen D 2020 Jpn. J. Appl. Phys. 59 SHHC05

    [42]

    Saifutdinov A I, Fairushin I I, Kashapov N F 2016 JETP Lett. 104 180

    [43]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302

    [44]

    Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008

    [45]

    Wang D Z, Yuan B W, Lu Q, Qiao J J, Xiong Q 2023 Trans. China Electrotech. Soc. 38 2541. (in Chinese) [王大智,袁博文,卢琪,乔俊杰,熊青 2023 电工技术学报 38 09]

    [46]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [47]

    Hayashi M 2003 Japan: N. p.

    [48]

    Cunningham A J, O’Malley T F, M H R 1981 J. Phys. B: At. Mol. Phys. 14 773

    [49]

    Jonkers J, Sande M v d, Sola A, Gamero A, Rodero A, Mullen J v d 2003 Plasma Sources Sci. Technol. 12 464

    [50]

    Niu C, Hu Y H, Shao K, Sun S R, Wang H X 2022 Plasma Chem. Plasma Process. 42 885

    [51]

    Kolokolov N B, Kudrjavtsev A A, Blagoev A B 1994 Phys. Scr. 50 371

    [52]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [53]

    Karoulina E V, Lebedev Y A 1992 J. Phys. D: Appl. Phys. 25 401

    [54]

    Kannari F, Suda A, Obara M, Fujioka T 1983 IEEE J. Quantum Electron. 19 1587

    [55]

    Gregório J, Leprince P, Boisse-Laporte C, Alves L L 2012 Plasma Sources Sci. Technol. 21 015013

    [56]

    Rafatov I, Bogdanov E A, Kudryavtsev A A 2012 Phys. Plasmas 19 033502

    [57]

    Kolokolov N B, Blagoev A B 1993 Phys.-Usp. 36 152

    [58]

    Beulens J J, Milojevic D, Schram D C, Vallinga P M 1991 Phys. Fluids B 3 2548–2557

    [59]

    Du S G 1998 Plasma Physics (Beijing: Atomic Press), pp 160–163. (in Chinese) [杜世刚 1998 等离子体物理 (北京:原子能出版社) 160-163 页]

    [60]

    Bird R B, Steward W E, Lightfoot E N 2001 Transport phenomena (Hoboken: Wiley)

    [61]

    Chapman S, Cowling T G 1995 The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (Cambridge: Cambridge university Press), p 167

    [62]

    Zhang D H Y, Liu J B, Fu Y Y 2024 Acta Phys. Sin. 73 025201. (in Chinese) [张东荷 雨,刘金宝,付洋洋 2024 物理学报 73 2]

    [63]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. Dev. 8 240

    [64]

    Neufeld P D, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [65]

    Gurvich L V, Veyts I V, Alcock C B 1989 Thermodynamic properties of individual substances, vol 1, Part 2 Tables, 4th edn (Washington: Hemisphere Publishing Corp), pp 135–138

    [66]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37

    [67]

    Liu F C, Yan W, Wang D Z 2013 Acta Phys. Sin. 62 175204. (in Chinese) [刘富成,晏 雯,王德真 2013 物理学报 62 17]

    [68]

    Incropera F P, DeWitt D P, Bergmann T L, Lavine A S 2007 Fundamentals of heat and mass transfer (New York: John Wiley)

    [69]

    Touloukian Y S, Powell R W, Ho C Y, Clemens P G 1970 Thermal conductivity: metallic elements and alloys (thermophysical properties of matter) (New York: Plenum Press)

    [70]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.), pp 167–211

    [71]

    Schottky W 1914 Ann. Phys. 44 1011

    [72]

    Yang J J 1983 Gas Discharge (Beijing: Science Press), p 50. (in Chinese) [杨津基 1983 气体放电 (北京:科学出版社) 第 50 页]

    [73]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747. (in Chinese) [邵先 军,马跃,李娅西,张冠军 2010 物理学报 59 12]

    [74]

    Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986

    [75]

    COMSOL A B COMSOL Multiphysics® v. 6.1. Stockholm, Sweden

    [76]

    Si Ma W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 660

    [77]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [78]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag), pp 167–211

    [79]

    Gudmundsson J T, Hecimovic A 2017 Plasma Sources Sci. Technol. 26 123001

    [80]

    Paschen F 1889 Ann. Phys. 273 69

    [81]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press), pp 121–126. (in Chinese) [徐学基,诸定昌 1996 气体放电物理 (上海:复旦大学出版社) 第 121-126 页]

    [82]

    Townsend J S 1900 Nature 62 340–341

    [83]

    Yue Q Y, Jin H 1988 Radiat. Prot. 6 401. (in Chinese) [岳清宇,金花 1988 辐射防护 6 1]

    [84]

    Lü B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [85]

    Liang X D, Zhou Y X, Zeng R 2015 High Voltage Engineering (Second Edition) (Beijing: Tsinghua University Press), pp 17–18. (in Chinese) [梁曦东,周远翔,曾嵘 2015 高电压 工程(第 2 版) (北京:清华大学出版社) 第 17-18 页]

    [86]

    Bouchikhi A, Hamid A 2010 Plasma Sci. Technol. 12 59

    [87]

    Levko D, Subramaniam V, Raja L L 2022 Phys. Plasmas 29 023503

    [88]

    Bogaerts A, Neyts E, Gijbels R, Van d M J 2002 Spectrochim. Acta, Part B 57 609

    [89]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

    [90]

    Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203. (in Chinese) [姚聪伟,马恒驰,常正实,李平,穆海宝,张冠军 2017 物理学报 66 12]

    [91]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [92]

    Gottscho R A, Mitchell A, Scheller G R, Chan Y Y, Graves D B 1989 Phys. Rev. A 40 6407

    [93]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301

    [94]

    Kolobov V I, Tsendin L D 1992 Phys. Rev. A 46 7837

    [95]

    Boeuf J P, Pitchford L C 1995 J. Phys. D: Appl. Phys. 28 2083

    [96]

    Kudryavtsev A A, Toinova N E 2005 Tech. Phys. Lett. 31 370

    [97]

    Kudryavtsev A A, Nisimov S U, Prokhorova E I, Slyshov A G 2011 Tech. Phys. Lett. 37 838

    [98]

    Kudryavtsev A A, Nisimov S U, Prokhorova E I, Slyshov A G 2012 Tech. Phys. 57 1188

    [99]

    Barzilovich K A, Bogdanov E A, Kudryavtsev A A 2014 Tech. Phys. Lett. 40 581

    [100]

    Marić D, Kutasi K, Malović G, Petrović Z L 2002 Eur. Phys. J. D 21 73

    [101]

    Phelps A V 2001 Plasma Sources Sci. Technol. 10 329

    [102]

    Marić D, Hartmann P, Malović G, Petrović Z L 2003 J. Phys. D: Appl. Phys. 36 2639

    [103]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309

  • [1] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化. 物理学报, doi: 10.7498/aps.71.20212394
    [2] 郑建东, 周江, 皮晓丽, 邹晨, 李一帆, 徐坤博, 龚自正, 胡帼杰. 空间碎片超高速撞击下太阳电池阵伏安特性. 物理学报, doi: 10.7498/aps.70.20210458
    [3] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, doi: 10.7498/aps.67.20172205
    [4] 侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛. 大气压管板结构纳秒脉冲放电中时域X射线研究. 物理学报, doi: 10.7498/aps.66.105204
    [5] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, doi: 10.7498/aps.66.025203
    [6] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, doi: 10.7498/aps.63.228201
    [7] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍. 纳秒脉冲气体放电中逃逸电子束流的研究. 物理学报, doi: 10.7498/aps.63.085208
    [8] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, doi: 10.7498/aps.63.095206
    [9] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究. 物理学报, doi: 10.7498/aps.62.205209
    [10] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, doi: 10.7498/aps.61.045201
    [11] 俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖. 针-板DBD微流注与微辉光交替生成的机理研究. 物理学报, doi: 10.7498/aps.61.195202
    [12] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, doi: 10.7498/aps.61.245204
    [13] 武晋泽, 唐晋娥, 董有尔, 张国峰, 王彦华. 常压下气体放电等离子体振荡的实验与理论研究. 物理学报, doi: 10.7498/aps.61.195208
    [14] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究. 物理学报, doi: 10.7498/aps.61.035202
    [15] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, doi: 10.7498/aps.61.165101
    [16] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, doi: 10.7498/aps.60.073101
    [17] 马松山, 朱佳, 徐慧, 郭锐. 碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响. 物理学报, doi: 10.7498/aps.59.7458
    [18] 张燕, 顾彪, 王文春, 彭许文, 王德真. 常压He气和N2气均匀介质阻挡放电的伏安特性. 物理学报, doi: 10.7498/aps.58.5532
    [19] 马 勇, 邹 斌, 李宗良, 王传奎, 罗 毅. 六元杂环分子电学特性的理论研究. 物理学报, doi: 10.7498/aps.55.1974
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  131
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-09

/

返回文章
返回