-
在介质阻挡放电体系中产生辉光放电可以有效的提高放电体系产生高能电子的性能, 为等离子体化学反应提供更加丰富的活性粒子.本文对针-板介质阻挡放电体系下的放电模式进行了研究,实验发现放电正负半周期表现出不同的放电模式, 激励电压为3 kV时放电正负半周期分别为微流注放电和电晕放电(或者Trichel脉冲放电),激励电压为6 kV时放电正负半周期分别为微流注放电和微辉光放电.微辉光放电形貌具有与典型辉光放电相同的分层次放电结构, 分析了激励电压6 kV时的放电过程,认为足够强的阴极电场强度和裸露针状电极形成的有效的二次电子发射过程是形成微辉光放电的主要因素,绝缘介质层的存在避免了微辉光放电向弧光放电过渡.Performance of producing a high energy electron can be improved, if the glow discharge is generated in a system of dielectric barrier discharge. In this paper, different discharge modes of pin-to-plane dielectric barrier discharge are investigated in atmospheric pressure. Different discharge modes are observed in the positive half-period and negative half-period of the discharge. When and applied voltage is 3 kV, a streamer mode appear in the positive half-period and a corona (or Trichel discharge) mode occurs in negative half-period. When the applied voltage is 6 kV, a streamer emerges in the positive half-period and a micro glow discharge is present in the negative half-period. The micro glow discharge has hierarchical structure like that typical low pressure glow discharge produces. The generation of micro glow discharge is due to, enough strong cathode electric field strength and effective secondary electron emission process around naked negative electrode. The glow discharge transforming to arc discharge is avoided due to dielectric layer.
[1] Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P 2006 Spectrochimica Acta Part B Atomic Spectroscopy 61 2
[2] Roth J R, Rahel J, Dai X 2005 J. Phys. D: Appl. Phys. 38 555
[3] Fang Z, Qiu Y, Luo Y 2003 J. Phys. D: Appl. Phys. 36 2980
[4] Eden J G 2006 Proc. IEEE 94 567
[5] Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
[6] Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys. D: Appl. Phys. 21 838
[7] Kogoma M, Okazaki S 1994 J. Phys.D:Appl. Phys. 27 1985
[8] Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 231504
[9] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950
[10] Trunec D, Brablec A, Buchta J 2001 J. Phys. D: Appl. Phys. 34 1697
[11] Radu I, Bartnikas R, Czeremuszkin G, Wertheimer M R 2003 IEEE Trans. Plasma Sci. 31 411
[12] Golubovskii Y B, Maiorov V A, Behnke J F, Tepper J, Lindmayer M 2004 J. Phys. D: Appl. Phys. 37 1346
[13] Luo H Y, Liang Z, Wang X X, Guan Z C, Wang L M 2010 J. Phys. D: Appl. Phys. 43 155201
[14] Okazaki S, Kogoma M, Uehara M, Kimura Y 1993 J. Phys. D: Appl. Phys. 26 889
[15] Qi B, Ren C S, Wang D Z, Li S Z, Wang K, Zhang Y T 2006 Appl. Phys. Lett. 89 131503
[16] Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845
[17] Radu I, Bartnikas R, Wertheimer M R 2003 J. Phys. D: Appl. Phys. 36 1284
[18] Akishev Y S, Dem'yanov A V, Monich, A E, Trushkin N I 2003 Plasma Physics Reports 29 82
[19] Trichel G W 1938 Phys. Rev. 54 1078
[20] Wagner H E, Brandenburg R, Kozlov K V, Sonnenfeld A, Michel P, Behnke J F 2003 Vacuum 71 417
[21] Takaki K 2004 IEEE Trans. Plasma Sci. 32 2279
[22] Bartnikas R, Radu I, Wertheimer M R 2007 IEEE Trans. Plasma Sci. 35 1437
-
[1] Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P 2006 Spectrochimica Acta Part B Atomic Spectroscopy 61 2
[2] Roth J R, Rahel J, Dai X 2005 J. Phys. D: Appl. Phys. 38 555
[3] Fang Z, Qiu Y, Luo Y 2003 J. Phys. D: Appl. Phys. 36 2980
[4] Eden J G 2006 Proc. IEEE 94 567
[5] Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
[6] Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys. D: Appl. Phys. 21 838
[7] Kogoma M, Okazaki S 1994 J. Phys.D:Appl. Phys. 27 1985
[8] Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 231504
[9] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950
[10] Trunec D, Brablec A, Buchta J 2001 J. Phys. D: Appl. Phys. 34 1697
[11] Radu I, Bartnikas R, Czeremuszkin G, Wertheimer M R 2003 IEEE Trans. Plasma Sci. 31 411
[12] Golubovskii Y B, Maiorov V A, Behnke J F, Tepper J, Lindmayer M 2004 J. Phys. D: Appl. Phys. 37 1346
[13] Luo H Y, Liang Z, Wang X X, Guan Z C, Wang L M 2010 J. Phys. D: Appl. Phys. 43 155201
[14] Okazaki S, Kogoma M, Uehara M, Kimura Y 1993 J. Phys. D: Appl. Phys. 26 889
[15] Qi B, Ren C S, Wang D Z, Li S Z, Wang K, Zhang Y T 2006 Appl. Phys. Lett. 89 131503
[16] Wang X X, Luo H Y, Liang Z, Mao T, Ma R L 2006 Plasma Sources Sci. Technol. 15 845
[17] Radu I, Bartnikas R, Wertheimer M R 2003 J. Phys. D: Appl. Phys. 36 1284
[18] Akishev Y S, Dem'yanov A V, Monich, A E, Trushkin N I 2003 Plasma Physics Reports 29 82
[19] Trichel G W 1938 Phys. Rev. 54 1078
[20] Wagner H E, Brandenburg R, Kozlov K V, Sonnenfeld A, Michel P, Behnke J F 2003 Vacuum 71 417
[21] Takaki K 2004 IEEE Trans. Plasma Sci. 32 2279
[22] Bartnikas R, Radu I, Wertheimer M R 2007 IEEE Trans. Plasma Sci. 35 1437
计量
- 文章访问数: 7672
- PDF下载量: 654
- 被引次数: 0