搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体电极上辉光放电丝的运动特性研究

李雪辰 耿金伶 贾鹏英 吴凯玥 贾博宇 康鹏程

引用本文:
Citation:

液体电极上辉光放电丝的运动特性研究

李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程

Rotating characteristics of glow discharge filament on liquid electrode surface

Li Xue-Chen, Geng Jin-Ling, Jia Peng-Ying, Wu Kai-Yue, Jia Bo-Yu, Kang Peng-Cheng
PDF
导出引用
  • 大气压液体电极放电在生物医疗、化学降解、环境保护等众多方面具有广泛的应用前景,引起了研究者的关注.本文利用直流电压激励棒-水电极装置,在6 mm气隙间产生了大气压辉光放电.研究发现,随着电流的增大,放电由锥状转变成柱状,且此过程中水面上放电环的直径先增大后减小.利用高速照相机对放电进行研究,发现锥状放电是由单个放电丝旋转形成的.通过测量放电的伏安特性,表明放电处于正常辉光机理.利用光谱学方法,研究了不同电流下的振动温度、转动温度和谱线强度比I391.4/I337.1,发现它们均随电流的增加而增大.根据气体放电理论,分析和解释了放电丝的运动机理,并对水面上放电环直径随电流的变化关系进行了解释.这些结果对于大气压液体电极放电的理论研究和实际应用均具有一定参考价值.
    Atmospheric pressure glow discharge above liquid electrode has extensive application potentials in biomedicine, chemical degradation,environmental protection,etc.In this paper,such a kind of discharge excited by a direct current voltage is generated through using a metal rod above water surface.Results show that the discharge has a ring shape on the water surface when the current is low.With increasing the discharge current,its diameter first increases,and then decreases after reaching a maximum,and finally slightly increases.In this process,the discharge transits from a conical shape to a column.Fast photography indicates that the conical discharge actually originates from the rotation of a discharge filament,which can be attributed to the effect of electronegative particles generated in the discharge channel. These electronegative particles,mainly including NO,NO2,NO3,O,O3 and OH,can increase electron attachment coefficient β,resulting in extinguishment of the original discharge channel.Due to a similar field value and a normal β coefficient,the breakdown conditions can be satisfied in a region adjacent to the original channel.Therefore,the discharge will move into the new region.Further investigation indicates that both the conical discharge and the column discharge are in a normal glow regime.By optical emission spectroscopy,it is found that the vibrational temperature,the rotational temperature and the intensity ratio of I391.4/I337.1 increase with increasing the current.Electron mobility decreases in the conical discharge due to voltage decreasing with the current.Hence,electrons have an increased possibility with which they are attracted by the electronegative particles to form negative ions.Consequently,with increasing the discharge current,more negative ions will be accumulated not only near the conical center,but also in the vicinity of the discharge channel.Obviously,there is repulsive force between the negative ions in the two regions.The repulsive force increases with increasing the discharge current,which leads to the ring diameter increasing with the current.Besides the negative ions,gas temperature plays another important role in the discharge.It increases with current increasing,leading to the decrease of gas density in the discharge channel.Hence,electrons have a reduced probability with which they are attached by electronegative particles.This factor will lead to a reduced force between less negative ions in the two regions.Consequently,after reaching its maximum,the ring diameter decreases with current increasing.If the current is high enough,the discharge channel will have a sufficiently high temperature and an adequately lower gas density, resulting in an increased electron energy as well as an increased α(the first Townsend ionization coefficient).Therefore, the discharge will be self-sustained in the original region,other than move into an adjacent region.Consequently,the column discharge appears with the current increasing to some extent.In the column discharge,more negative ions will be accumulated above the water surface with increasing the current.These negative ions extend along the water surface,which contributes to the slight diameter increase of the luminous column.These experimental results are of great significance for theoretically studying liquid anode discharge.
      通信作者: 李雪辰, plasmalab@126.com
    • 基金项目: 国家自然科学基金(批准号:11575050,10805013)、河北省自然科学基金(批准号:A2015201199,A2015201092,A2016201042)、河北省百优人才(批准号:SLRC2017021)、河北省三三三人才基金(批准号:A2016005005)、河北省教育厅科研基金(批准号:LJRC001)和中西部高校综合实力提升工程资助项目资助的课题.
      Corresponding author: Li Xue-Chen, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050, 10805013), the Natural Science Foundation of Hebei province, China (Grant Nos. A2015201199, A2015201092, A2016201042), One Hundred Talent Project of Hebei Province, China (Grant No. SLRC2017021), the 333 Talents Project of Hebei Province, China (Grant No. A2016005005), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC001), and the Midwest Universities Comprehensive Strength Promotion Project.
    [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001

    [2]

    Bruggeman P, Ribezl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012

    [3]

    Bobkova E S, Krasnov D S, Sungurova A V, Rybkin V V, Choi H S 2016 Korean J. Chem. Eng. 33 1620

    [4]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862

    [5]

    Shimizu T, Iwafuchi Y, Morfill G E, Sato T 2011 J. Photopolym. Sci. Technol. 24 421

    [6]

    Jacobs T, Carbone E, Morent R, Geyter N D, Reniersb F, Leys C 2010 Surf. Interface Anal. 42 1316

    [7]

    Shirai N, Uchida S, Tochikubo F 2014 Jpn. J. Appl. Phys. 53 046202

    [8]

    Shekhar R, Karunasagar D, Manjusha R, Arunachalam J 2009 Anal. Chem. 81 8157

    [9]

    Shen J, Sun Q, Zhang Z L, Cheng C, Lan Y, Zhang H, Xu Z M, Zhao Y, Xia W D, Chu P K 2015 Plasma Process. Polym. 12 252

    [10]

    Takai E, Kitano K, Kuwabara J, Shiraki K 2012 Plasma Process. Polym. 9 77

    [11]

    Gils C A J, Hofmann S, Boekema B K H L, Brandenburg R, Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 175203

    [12]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [13]

    Shutov D A, Ol’khova E O, Kostyleva A N, Bobkova E S 2014 High Energy Chem. 48 343

    [14]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [15]

    Lu X P, Laroussi M 2003 J. Phys. D: Appl. Phys. 36 661

    [16]

    Andre P, Aubreton J, Barinov Y, Elchinger M F, Fauchais P, Faure1 G, Kaplan V, Lefort A, Rat V, Shkol’nik S 2002 J. Phys. D: Appl. Phys. 35 1846

    [17]

    Rowland S M, Lin F C 2006 J. Phys. D: Appl. Phys. 39 3067

    [18]

    Lu Y, Xu S F, Zhong X X, Ostrikov K, Cvelbar U, Mariotti D 2013 Europhys. Lett. 102 15002

    [19]

    Liu J J, Hu X 2013 Plasma Sci. Technol. 15 768

    [20]

    Li X C, Zhang P P, Jia P Y, Chu J D, Chen J Y 2017 Sci. Report 7 2672

    [21]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2008 IEEE Trans. Plasma Sci. 36 126

    [22]

    Miao S Y, Ren C S, Wang D Z, Zhang Y T, Qi B, Wang Y N 2008 IEEE Trans. Plasma Sci. 36 126

    [23]

    Wilson A, Staack D, Farouk T, Gutsol A, Fridman A, Farouk B 2008 Plasma Sources Sci. Technol. 17 045001

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag Berlin Heidelberg) p131

    [25]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700

    [26]

    Shuaibov A K, Chuchman M P, Mesarosh L P 2014 Tech. Phys. 59 847

    [27]

    Li X C, Yuan N, Jia P Y, Chen J Y 2010 Phys. Plasmas 17 093504

    [28]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [29]

    Bruggeman P, Schram D, Kong M, Leys C 2009 Plasma Process. Polym. 6 751

  • [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001

    [2]

    Bruggeman P, Ribezl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012

    [3]

    Bobkova E S, Krasnov D S, Sungurova A V, Rybkin V V, Choi H S 2016 Korean J. Chem. Eng. 33 1620

    [4]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862

    [5]

    Shimizu T, Iwafuchi Y, Morfill G E, Sato T 2011 J. Photopolym. Sci. Technol. 24 421

    [6]

    Jacobs T, Carbone E, Morent R, Geyter N D, Reniersb F, Leys C 2010 Surf. Interface Anal. 42 1316

    [7]

    Shirai N, Uchida S, Tochikubo F 2014 Jpn. J. Appl. Phys. 53 046202

    [8]

    Shekhar R, Karunasagar D, Manjusha R, Arunachalam J 2009 Anal. Chem. 81 8157

    [9]

    Shen J, Sun Q, Zhang Z L, Cheng C, Lan Y, Zhang H, Xu Z M, Zhao Y, Xia W D, Chu P K 2015 Plasma Process. Polym. 12 252

    [10]

    Takai E, Kitano K, Kuwabara J, Shiraki K 2012 Plasma Process. Polym. 9 77

    [11]

    Gils C A J, Hofmann S, Boekema B K H L, Brandenburg R, Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 175203

    [12]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [13]

    Shutov D A, Ol’khova E O, Kostyleva A N, Bobkova E S 2014 High Energy Chem. 48 343

    [14]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [15]

    Lu X P, Laroussi M 2003 J. Phys. D: Appl. Phys. 36 661

    [16]

    Andre P, Aubreton J, Barinov Y, Elchinger M F, Fauchais P, Faure1 G, Kaplan V, Lefort A, Rat V, Shkol’nik S 2002 J. Phys. D: Appl. Phys. 35 1846

    [17]

    Rowland S M, Lin F C 2006 J. Phys. D: Appl. Phys. 39 3067

    [18]

    Lu Y, Xu S F, Zhong X X, Ostrikov K, Cvelbar U, Mariotti D 2013 Europhys. Lett. 102 15002

    [19]

    Liu J J, Hu X 2013 Plasma Sci. Technol. 15 768

    [20]

    Li X C, Zhang P P, Jia P Y, Chu J D, Chen J Y 2017 Sci. Report 7 2672

    [21]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2008 IEEE Trans. Plasma Sci. 36 126

    [22]

    Miao S Y, Ren C S, Wang D Z, Zhang Y T, Qi B, Wang Y N 2008 IEEE Trans. Plasma Sci. 36 126

    [23]

    Wilson A, Staack D, Farouk T, Gutsol A, Fridman A, Farouk B 2008 Plasma Sources Sci. Technol. 17 045001

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag Berlin Heidelberg) p131

    [25]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700

    [26]

    Shuaibov A K, Chuchman M P, Mesarosh L P 2014 Tech. Phys. 59 847

    [27]

    Li X C, Yuan N, Jia P Y, Chen J Y 2010 Phys. Plasmas 17 093504

    [28]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [29]

    Bruggeman P, Schram D, Kong M, Leys C 2009 Plasma Process. Polym. 6 751

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [2] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究. 物理学报, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [3] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化. 物理学报, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [4] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [6] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [7] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [8] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [9] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究. 物理学报, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [10] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [11] 俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖. 针-板DBD微流注与微辉光交替生成的机理研究. 物理学报, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [12] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [13] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [14] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [16] 张连珠, 高书侠. H2对N2直流辉光放电电子行为的影响. 物理学报, 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [17] 齐 冰, 任春生, 马腾才, 王友年, 王德真. 多针电晕增强大气压辉光放电稳定性研究. 物理学报, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [18] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [19] 刘德泳, 王德真, 刘金远. 尘埃粒子在直流辉光放电阴极鞘层中的运动及悬浮. 物理学报, 2000, 49(6): 1094-1100. doi: 10.7498/aps.49.1094
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  4913
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-04-05

/

返回文章
返回