搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高气压氩气辉光放电条纹等离子体的形成和演化

朱海龙 师玉军 王嘉伟 张志凌 高一宁 张丰博

引用本文:
Citation:

高气压氩气辉光放电条纹等离子体的形成和演化

朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博

Formation and evolution of striation plasma in high-pressure argon glow discharge

Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo
PDF
HTML
导出引用
  • 辉光放电等离子体正柱区内的自组织条纹现象是气体放电物理中的基础性问题, 涉及电子动力学、输运过程、放电不稳定性、非线性现象等丰富的物理内容, 是基础物理及其应用中备受关注的重要课题. 本文报道了一种在千帕量级气压下产生的氩气辉光放电条纹等离子体, 重点关注了条纹等离子体的电学、光学及电离波传播特征, 从物理上分析了氩气条纹等离子体的产生及消除机制. 研究结果表明, 在此气压下产生的氩气条纹等离子体, 其条纹长度约为1.5 mm, 且随气压减小; 电离波波速为1.87 m/s, 频率为1.25 kHz. 发射光谱诊断证实, 条纹等离子体的产生与丰富的亚稳态原子密切相关, 亚稳态原子导致的分步电离过程会引起电离不稳定性, 这种不稳定性以电离波的形式传播, 使得等离子体参数发生纵向调幅, 从而形成明暗相间的条纹等离子体. 加入氮气可有效猝灭亚稳态氩原子, 调整电子能量分布函数, 这使得等离子体的不稳定性条件被破坏, 因此, 条纹等离子体消失. 本工作可为人们进一步认识和理解高气压下辉光放电条纹等离子体的形成及消除机制提供新的思路和实验依据.
    The self-organized striation phenomenon in the positive column region of glow discharge plasma is a basic problem in gas discharge physics, which involves rich physics such as electron dynamics, transport process, discharge instability and nonlinear phenomenon. It is an important topic in basic physics and practical application. In this work an argon glow discharge striation plasma at high pressure is reported. The electrical, optical and ionization wave propagation characteristics of the striation plasma, and the evolution of the striation plasma with pressure and impurity gas are investigated experimentally. The generation and quenching mechanism of argon striation plasma are analyzed. The results show that the striation length is about 1.5 mm, and decreases with pressure increasing, and the velocity and frequency of the ionization wave are estimated at 1.87 m/s and 1.25 kHz, respectively. The measurement of optical emission spectrum shows that the generation of striation plasma is probably related to the argon metastable atoms. The stepwise ionization process caused by metastable atoms triggers off an ionization instability. The instability propagates in the form of ionization wave, which leads the plasma parameters to be modulated longitudinally, thus, forming an alternating bright and dark striation plasma. The adding of nitrogen can effectively quench metastable argon atoms and change the electron energy distribution function, which destroys the instability conditions of the plasma, therefore, the striation plasma disappears. This work provides a new insight into the understanding of the formation and annihilation mechanism of glow discharge striation plasma at high pressure.
      通信作者: 朱海龙, zhuhl@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875039) 资助的课题.
      Corresponding author: Zhu Hai-Long, zhuhl@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875039).
    [1]

    Bogaerts A 1999 J. Anal. At. Spectrom. 14 1375Google Scholar

    [2]

    Kiselev A S, Menshchikova V V, Seyfulina N A, Smirnov E A 2019 J. Phys. Conf. Ser. 1313 012030Google Scholar

    [3]

    Long L, Zhou W X, Tang J F, Zhou D S 2020 Plasma Process. Polym. 17 1900242Google Scholar

    [4]

    Ezhovskii Y K, Mikhailovskii S V 2019 Russ. Microelectron. 48 229Google Scholar

    [5]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) p230

    [6]

    Kolobov V I 2006 J. Phys. D Appl. Phys. 39 R487Google Scholar

    [7]

    Pollard W, Suzuki P, Staack D 2014 IEEE Trans. Plasma Sci. 42 2650Google Scholar

    [8]

    Mulders H C J, Brok W J M, Stoffels W W 2008 IEEE Trans. Plasma Sci. 36 1380Google Scholar

    [9]

    Mahamud R, Farouk T, Kolobov V 2017 The 44th International Conference on Plasma Science Atlantic City, American, May 21–24, 2017

    [10]

    Lisovskiy V A, Koval V A, Artushenko E P, Yegorenkov V D 2012 V Eur. J. Phys. 33 1537

    [11]

    Keys D A, Heard J F 1930 Nature 125 971Google Scholar

    [12]

    Tsendin L D 2009 Plasma Sources Sci. Technol. 18 014020Google Scholar

    [13]

    Novák M 1960 Czech. J. Phys. B 10 954Google Scholar

    [14]

    Zhu W Y, Cui R L, He F, Wang Y Q, Ouyang J T 2021 Phys. Plasmas 28 113502Google Scholar

    [15]

    Levko D 2021 Phys. Plasmas 28 013506Google Scholar

    [16]

    Golubovskii Y B, Nekuchaev V O, Skoblo A Y 2014 Tech. Phys. 59 1787Google Scholar

    [17]

    Golubovskii Y, Gurkova T, Valin S 2021 Plasma Sources Sci. Technol. 30 115001Google Scholar

    [18]

    Godyak V A, Alexandrovich B M, Kolobov V I 2019 Phys. Plasmas 26 033504Google Scholar

    [19]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Golubovskii Y, Valin S, Pelyukhova E, Nekuchaev V 2019 Plasma Sources Sci. Technol. 28 45015Google Scholar

    [22]

    Golubovskii Y B, Siasko A V, Kalanov D V, Nekuchaev V O 2018 Plasma Sources Sci. Technol. 27 085009Google Scholar

    [23]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [24]

    Johnston P D, 1971 Phys. Lett. A 34 389

    [25]

    Siefert N S, Sands B L, Ganguly B N 2006 Appl. Phys. Lett. 89 011502Google Scholar

    [26]

    Yamada H, Kato S, Shimizu T, Fujiwara M, Fujiwara Y, Kim J, Ikehara S, Shimizu N, Ikehara Y, Sakakita H 2020 Phys. Plasmas 27 022107Google Scholar

    [27]

    Morgan W L, Childs M W 2015 Plasma Sources Sci. Technol. 24 55022Google Scholar

    [28]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [29]

    Iza F, Hopwood J A 2005 IEEE Trans. Plasma Sci. 33 306Google Scholar

    [30]

    Zhu H, Su Z, Dong Y 2017 Appl. Phys. Lett. 111 054104Google Scholar

    [31]

    Golubovskii Yu B, Siasko A V, Nekuchaev V O 2020 Plasma Sources Sci. Technol. 29 065020Google Scholar

    [32]

    Kabouzi Y, Calzada M D, Moisan M, Tran K C, Trassy C 2002 J. Appl. Phys. 91 1008Google Scholar

    [33]

    Czerwiec T, Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827Google Scholar

    [34]

    Kawamura E, Lieberman M A, Lichtenberg A J 2019 Phys. Plasmas 26 093506Google Scholar

    [35]

    Kawamura E, Lieberman M A, Lichtenberg A J 2016 Plasma Sources Sci. Technol. 25 054009Google Scholar

    [36]

    格兰特 著 (马腾才, 秦运文 译) 等离子体物理基础 (北京: 原子能出版社) 第258 —265页

    Голант В Е(translated by Ma T C, Qin Y W) 1983 Fundamentals of Plasma Physics (Beijing: Atomic Energy Press) pp258–265 (in Chinese)

    [37]

    Böhle A, Ivanov O, Kolisko A, Kortshagen U, Schlüter H, Vikharev A 1996 J. Phys. D: Appl. Phys. 29 369Google Scholar

    [38]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D. Appl. Phys. 41 055204Google Scholar

    [39]

    Hong Y C, Uhm H S, Yi W J 2008 Appl. Phys. Lett. 93 051504Google Scholar

    [40]

    Masoud N, Martus K, Becker K 2005 J. Phys. D: Appl. Phys. 38 1674Google Scholar

    [41]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [42]

    Tvarog D, Olejníček J, Kratochvíl J, Kšírová P, Poruba A, Hubička Z, Čada M 2021 J. Appl. Phys. 130 013301Google Scholar

    [43]

    Kang N, Gaboriau F, Oh S, Ricard A 2011 Plasma Sources Sci. Technol. 20 045015Google Scholar

    [44]

    Hayashi M 1982 J. Phys. D: Appl. Phys. 15 1411Google Scholar

    [45]

    Petrov G M, Boris D R, Petrova T B, Lock E H, Fernsler R F, Walton S G 2013 Plasma Sources Sci. Technol. 22 065005Google Scholar

  • 图 1  几种典型的辉纹 (a) 250 Pa下的氩气辉纹[8]; (b) 133 Pa下的氮气辉纹[9]; (c) 18 kPa下的氦气辉纹; (d) 38 kPa下的氩气辉纹

    Fig. 1.  Several typical striations: (a) Argon striation at 250 Pa; (b) nitrogen striation at 133 Pa; (c) helium striation at 18 kPa; (d) argon striation at 38 kPa.

    图 2  实验装置示意图

    Fig. 2.  Schematic diagram of the experimental setup.

    图 3  (a) 氩气辉纹放电图像, 电极间距为10 mm, 气压为21.22 kPa, 曝光时间为1/200 s; (b) 辉纹边缘检测图像; (c) 辉纹灰度值分布

    Fig. 3.  (a) Typical image of argon striation plasmas in electrode spacing of 10 mm and gas pressure of 21.22 kPa, within exposure time of 1/200 s; (b) image edge detection of striation; (c) gray distribution of striation plasmas.

    图 4  放电电压和电流波形

    Fig. 4.  Typical waveforms of discharge voltage and discharge current

    图 5  2级明纹的发射光谱

    Fig. 5.  Optical emission spectroscopy of 2nd bright striation.

    图 6  氩激发态能级图

    Fig. 6.  Energy-level diagram for argon excited states.

    图 7  各级明暗条纹的发射强度

    Fig. 7.  Emission intensity of bright and dark striations.

    图 8  辉纹随气压的形态演化 (a) 28.54 kPa; (b) 32.84 kPa; (c) 37.62 kPa; (d) 42.51 kPa

    Fig. 8.  Evolution of striations with pressure: (a) 28.54 kPa; (b) 32.84 kPa; (c) 37.62 kPa; (d) 42.51 kPa.

    图 9  加入氮气对辉纹的影响 (a) 23.17 kPa; (b) 23.26 kPa; (c) 23.37 kPa; (d) 23.64 kPa

    Fig. 9.  Effect of nitrogen gas addition to striations at different pressure: (a) 23.17 kPa; (b) 23.26 kPa; (c) 23.37 kPa; (d) 23.64 kPa.

    图 10  加入氮气对主要发射线696.543 nm的影响 (a) 23.17 kPa; (b) 23.26 kPa; (c) 23.37 kPa; (d) 23.64 kPa

    Fig. 10.  Effect of nitrogen gas addition to dominant emission of 696.543 nm: (a) 23.17 kPa; (b) 23.26 kPa; (c) 23.37 kPa; (d) 23.64 kPa.

    表 1  几种典型气体的电离波特征[30,39]

    Table 1.  Ionization wave characteristics of typical gases [30,39].

    放电气体气压/kPa电离波速度/(m·s–1)电离波频率/kHz
    氩气20.591.871.25
    氦气21.2220.785.20
    氮气100.00330.0038.00
    下载: 导出CSV
  • [1]

    Bogaerts A 1999 J. Anal. At. Spectrom. 14 1375Google Scholar

    [2]

    Kiselev A S, Menshchikova V V, Seyfulina N A, Smirnov E A 2019 J. Phys. Conf. Ser. 1313 012030Google Scholar

    [3]

    Long L, Zhou W X, Tang J F, Zhou D S 2020 Plasma Process. Polym. 17 1900242Google Scholar

    [4]

    Ezhovskii Y K, Mikhailovskii S V 2019 Russ. Microelectron. 48 229Google Scholar

    [5]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) p230

    [6]

    Kolobov V I 2006 J. Phys. D Appl. Phys. 39 R487Google Scholar

    [7]

    Pollard W, Suzuki P, Staack D 2014 IEEE Trans. Plasma Sci. 42 2650Google Scholar

    [8]

    Mulders H C J, Brok W J M, Stoffels W W 2008 IEEE Trans. Plasma Sci. 36 1380Google Scholar

    [9]

    Mahamud R, Farouk T, Kolobov V 2017 The 44th International Conference on Plasma Science Atlantic City, American, May 21–24, 2017

    [10]

    Lisovskiy V A, Koval V A, Artushenko E P, Yegorenkov V D 2012 V Eur. J. Phys. 33 1537

    [11]

    Keys D A, Heard J F 1930 Nature 125 971Google Scholar

    [12]

    Tsendin L D 2009 Plasma Sources Sci. Technol. 18 014020Google Scholar

    [13]

    Novák M 1960 Czech. J. Phys. B 10 954Google Scholar

    [14]

    Zhu W Y, Cui R L, He F, Wang Y Q, Ouyang J T 2021 Phys. Plasmas 28 113502Google Scholar

    [15]

    Levko D 2021 Phys. Plasmas 28 013506Google Scholar

    [16]

    Golubovskii Y B, Nekuchaev V O, Skoblo A Y 2014 Tech. Phys. 59 1787Google Scholar

    [17]

    Golubovskii Y, Gurkova T, Valin S 2021 Plasma Sources Sci. Technol. 30 115001Google Scholar

    [18]

    Godyak V A, Alexandrovich B M, Kolobov V I 2019 Phys. Plasmas 26 033504Google Scholar

    [19]

    王建龙, 丁芳, 朱晓东 2015 物理学报 64 045206Google Scholar

    Wang J L, Ding F, Zhu X D 2015 Acta Phys. Sin. 64 045206Google Scholar

    [20]

    Shkurenkov I A, Mankelevich Y A, Rakhimova T V 2009 Phys. Rev. E 79 046406Google Scholar

    [21]

    Golubovskii Y, Valin S, Pelyukhova E, Nekuchaev V 2019 Plasma Sources Sci. Technol. 28 45015Google Scholar

    [22]

    Golubovskii Y B, Siasko A V, Kalanov D V, Nekuchaev V O 2018 Plasma Sources Sci. Technol. 27 085009Google Scholar

    [23]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [24]

    Johnston P D, 1971 Phys. Lett. A 34 389

    [25]

    Siefert N S, Sands B L, Ganguly B N 2006 Appl. Phys. Lett. 89 011502Google Scholar

    [26]

    Yamada H, Kato S, Shimizu T, Fujiwara M, Fujiwara Y, Kim J, Ikehara S, Shimizu N, Ikehara Y, Sakakita H 2020 Phys. Plasmas 27 022107Google Scholar

    [27]

    Morgan W L, Childs M W 2015 Plasma Sources Sci. Technol. 24 55022Google Scholar

    [28]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [29]

    Iza F, Hopwood J A 2005 IEEE Trans. Plasma Sci. 33 306Google Scholar

    [30]

    Zhu H, Su Z, Dong Y 2017 Appl. Phys. Lett. 111 054104Google Scholar

    [31]

    Golubovskii Yu B, Siasko A V, Nekuchaev V O 2020 Plasma Sources Sci. Technol. 29 065020Google Scholar

    [32]

    Kabouzi Y, Calzada M D, Moisan M, Tran K C, Trassy C 2002 J. Appl. Phys. 91 1008Google Scholar

    [33]

    Czerwiec T, Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827Google Scholar

    [34]

    Kawamura E, Lieberman M A, Lichtenberg A J 2019 Phys. Plasmas 26 093506Google Scholar

    [35]

    Kawamura E, Lieberman M A, Lichtenberg A J 2016 Plasma Sources Sci. Technol. 25 054009Google Scholar

    [36]

    格兰特 著 (马腾才, 秦运文 译) 等离子体物理基础 (北京: 原子能出版社) 第258 —265页

    Голант В Е(translated by Ma T C, Qin Y W) 1983 Fundamentals of Plasma Physics (Beijing: Atomic Energy Press) pp258–265 (in Chinese)

    [37]

    Böhle A, Ivanov O, Kolisko A, Kortshagen U, Schlüter H, Vikharev A 1996 J. Phys. D: Appl. Phys. 29 369Google Scholar

    [38]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D. Appl. Phys. 41 055204Google Scholar

    [39]

    Hong Y C, Uhm H S, Yi W J 2008 Appl. Phys. Lett. 93 051504Google Scholar

    [40]

    Masoud N, Martus K, Becker K 2005 J. Phys. D: Appl. Phys. 38 1674Google Scholar

    [41]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [42]

    Tvarog D, Olejníček J, Kratochvíl J, Kšírová P, Poruba A, Hubička Z, Čada M 2021 J. Appl. Phys. 130 013301Google Scholar

    [43]

    Kang N, Gaboriau F, Oh S, Ricard A 2011 Plasma Sources Sci. Technol. 20 045015Google Scholar

    [44]

    Hayashi M 1982 J. Phys. D: Appl. Phys. 15 1411Google Scholar

    [45]

    Petrov G M, Boris D R, Petrova T B, Lock E H, Fernsler R F, Walton S G 2013 Plasma Sources Sci. Technol. 22 065005Google Scholar

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231946
    [2] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [3] 季佩宇, 黄天源, 陈佳丽, 诸葛兰剑, 吴雪梅. 螺旋波等离子体制备多种碳基薄膜原位诊断研究. 物理学报, 2021, 70(9): 097201. doi: 10.7498/aps.70.20201809
    [4] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度. 物理学报, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [5] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [6] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [7] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [8] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [11] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [12] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [13] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [14] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [15] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [16] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [17] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [18] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [19] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  4763
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-04-21
  • 上网日期:  2022-07-09
  • 刊出日期:  2022-07-20

/

返回文章
返回