-
研究了表面预处理对GaN同质外延的影响,获得了高电子迁移率AlGaN/GaN异质结材料.通过NH3/H2混合气体与H2交替通入反应室的方法对GaN模板和GaN半绝缘衬底进行高温预处理.研究结果表明,NH3/H2能够抑制GaN的分解,避免粗糙表面,但不利于去除表面的杂质,黄光带峰相对强度较高; H2促进GaN分解,随时间延长GaN分解加剧,导致模板表面粗糙不平,AlGaN/GaN HEMT材料二维电子气迁移率降低.采用NH3/H2混合气体与H2交替气氛模式处理模板或衬底表面,能够清洁表面,去除表面杂质,获得平滑的生长表面和外延材料表面,有利于提高AlGaN/GaN HEMT材料电学性能.在GaN衬底上外延AlGaN/GaN HEMT材料,2DEG迁移率达到2113 cm2/V·s,电学性能良好.
-
关键词:
- 金属有机物化学气相沉积 /
- 氮化镓 /
- 热处理 /
- 同质外延
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN grown on a foreign substrate leads to poor crystal quality and device reliability.The homo-epitaxial growth of GaN material has low dislocation density,which is the foundation of high performance of AlGaN/GaN highelectronic mobility transistor.However,it is difficult to prepare flat surface of GaN template or GaN substrate in thermal treatment process under the metal-organic chemical vapor deposition (MOCVD) ambient condition in which hydrogen (H2) is commonly used to clean the substrate surface,i.e.,to remove impurities from the substrate surface,since H2 would greatly enhance GaN decomposition in MOCVD high-temperature condition and etch GaN into roughness surfaceIn this work,an alternation gas model of ammonia/hydrogen (NH3/H2) mixed gas and H2 gas is designed.This technique is used in a thermal treatment process of GaN template and substrate by MOCVD.Then,we in-situ grow AlGaN/GaN HEMTs (high electron mobility transistors) on GaN template and GaN substrate,respectively.A series of alternation gas samples with various H2 treatment times is investigated.Optical microscope and atomic force microscope are used to observe the morphologies of GaN template and AlGaN/GaN HEMTs and two-dimensional electron gas (2DEG) mobility and density of AlGaN/GaN HEMTs are measured by contactless Hall measurement.Optical properties of AlGaN/GaN HEMTs are analyzed by photoluminescence at room temperature.The residual impurities of C and O in the GaN epilayer and the interfacial region between GaN epilayer and GaN substrate are analyzed by secondary ion mass spectrometry.The study results show that H2 enhances GaN decomposition in MOCVD at high temperature,and GaN decomposition greatly strengthens with H2 treatment time increasing leading to rough surface and the decrease of 2DEG mobility.The NH3/2 mixed gas could suppress GaN decomposition and avoid roughn surface,but go against cleaning out the purity from GaN surface,and the relativive intensity of the yellow band is higher.The NH3/2 mixed gas and 2 gas alternate thermal treatment model with proper 2 treatment time on GaN template or GaN substrate,not only obtains atomically flat surface of GaN template and HEMT structure,but also cleans out the purity from GaN surface,which is conducive to the increase of the electric properties of HEMT material.The highest 2DEG mobility reaches to 2136 cm2/V·s with 1 min 2 treatment in the alternate gas thermal treatment process grown on GaN templates and the electrical properties of HEMT material turn excellent.Finally,an alternate model with 5 min NH3/2 mixed gas followed by 1 min 2 and then 4 min mixed gas of thermal treatment process is used,the surface morphology of HEMT grown on GaN substrate shows highly uniform atomically steps and the root-mean-square value is 0.126 nm for 2 μm×2 μm scan area;the HEMT 2DEG mobility 2113 cm2/V·s grown on GaN substrate shows good electric properties,the residual impurities of C and O in the interfacial region between GaN epilayer and GaN substrates are below 1×1017 cm-3,showing clean interfacial.-
Keywords:
- metal-organic chemical vapor deposition /
- GaN /
- thermal treatment /
- homo-epitaxial
[1] Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006
[2] Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121
[3] Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202
[4] Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508
[5] Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527
[6] Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109
[7] Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705
[8] Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509
[9] Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974
[10] Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702
[11] Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527
[12] Bermudez V M 2004 Surf. Sci. 565 89
[13] Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018
[14] Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466
[15] Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145
[16] Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888
[17] Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301
[18] Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272
[19] Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427
[20] Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301
[21] Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849
[22] Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689
[23] Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807
[24] Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501
[25] Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77
期刊类型引用(12)
1. Yansheng Hu,Yuangang Wang,Wei Wang,Yuanjie Lv,Hongyu Guo,Zhirong Zhang,Hao Yu,Xubo Song,Xingye zhou,Tingting Han,Shaobo Dun,Hongyu Liu,Aimin Bu,Zhihong Feng. 11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate. Journal of Semiconductors. 2024(01): 46-50 . 必应学术
2. 李佳,房玉龙,张志荣. 基于Al N单晶衬底的高均匀性Al Ga N/Ga N HEMT材料研究分析. 中国标准化. 2024(S1): 325-329 . 百度学术
3. 白如雪,郭红霞,张鸿,王迪,张凤祁,潘霄宇,马武英,胡嘉文,刘益维,杨业,吕伟,王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报. 2023(01): 63-69 . 百度学术
4. 高楠,房玉龙,王波,张志荣,尹甲运,芦伟立,陈宏泰,牛晨亮. 4英寸GaN衬底MOCVD外延高质量AlGaN/GaN HEMT材料研究分析. 标准科学. 2023(S1): 210-214 . 百度学术
5. 陈加伐,周正仙,张大伟,沙雨杉,郑贤锋,屈军,崔执凤,刘劲松. L波段雷达功率放大器设计和优化. 光学仪器. 2021(04): 1-10 . 百度学术
6. 刘康,孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析. 物理学报. 2020(02): 290-297 . 百度学术
7. 陈伟伟,王程,杨章,罗聃,刘家玮,杨飞,汪蕾. 星用C频段50W固态功率放大器设计. 空间电子技术. 2020(01): 18-22 . 百度学术
8. 刘博阳,宋文涛,刘争晖,孙晓娟,王开明,王亚坤,张春玉,陈科蓓,徐耿钊,徐科,黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报. 2020(12): 319-327 . 百度学术
9. 尹甲运,张志荣,李佳,房玉龙,郭艳敏,高楠,冯志红. 6英寸SiC衬底上MOVPE生长GaN HEMT材料. 半导体技术. 2020(08): 623-626+637 . 百度学术
10. 陶鹏程,梁红伟,夏晓川,黄火林. AlN薄膜制备与表征研究型实验设计. 实验科学与技术. 2020(03): 118-122 . 百度学术
11. 陈伟伟,韩良,陈炽,王程,杨章,朱光耀,苏璞,菊卫东,汪蕾. 工作点对氮化镓微波功率器件交调特性影响研究. 空间电子技术. 2019(04): 1-5 . 百度学术
12. 刘燕丽,王伟,董燕,陈敦军,张荣,郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报. 2019(24): 294-300 . 百度学术
其他类型引用(4)
-
[1] Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006
[2] Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121
[3] Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202
[4] Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508
[5] Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527
[6] Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109
[7] Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705
[8] Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509
[9] Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974
[10] Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702
[11] Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527
[12] Bermudez V M 2004 Surf. Sci. 565 89
[13] Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018
[14] Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466
[15] Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145
[16] Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888
[17] Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301
[18] Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272
[19] Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427
[20] Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301
[21] Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849
[22] Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689
[23] Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807
[24] Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501
[25] Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77
期刊类型引用(12)
1. Yansheng Hu,Yuangang Wang,Wei Wang,Yuanjie Lv,Hongyu Guo,Zhirong Zhang,Hao Yu,Xubo Song,Xingye zhou,Tingting Han,Shaobo Dun,Hongyu Liu,Aimin Bu,Zhihong Feng. 11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate. Journal of Semiconductors. 2024(01): 46-50 . 必应学术
2. 李佳,房玉龙,张志荣. 基于Al N单晶衬底的高均匀性Al Ga N/Ga N HEMT材料研究分析. 中国标准化. 2024(S1): 325-329 . 百度学术
3. 白如雪,郭红霞,张鸿,王迪,张凤祁,潘霄宇,马武英,胡嘉文,刘益维,杨业,吕伟,王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报. 2023(01): 63-69 . 百度学术
4. 高楠,房玉龙,王波,张志荣,尹甲运,芦伟立,陈宏泰,牛晨亮. 4英寸GaN衬底MOCVD外延高质量AlGaN/GaN HEMT材料研究分析. 标准科学. 2023(S1): 210-214 . 百度学术
5. 陈加伐,周正仙,张大伟,沙雨杉,郑贤锋,屈军,崔执凤,刘劲松. L波段雷达功率放大器设计和优化. 光学仪器. 2021(04): 1-10 . 百度学术
6. 刘康,孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析. 物理学报. 2020(02): 290-297 . 百度学术
7. 陈伟伟,王程,杨章,罗聃,刘家玮,杨飞,汪蕾. 星用C频段50W固态功率放大器设计. 空间电子技术. 2020(01): 18-22 . 百度学术
8. 刘博阳,宋文涛,刘争晖,孙晓娟,王开明,王亚坤,张春玉,陈科蓓,徐耿钊,徐科,黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报. 2020(12): 319-327 . 百度学术
9. 尹甲运,张志荣,李佳,房玉龙,郭艳敏,高楠,冯志红. 6英寸SiC衬底上MOVPE生长GaN HEMT材料. 半导体技术. 2020(08): 623-626+637 . 百度学术
10. 陶鹏程,梁红伟,夏晓川,黄火林. AlN薄膜制备与表征研究型实验设计. 实验科学与技术. 2020(03): 118-122 . 百度学术
11. 陈伟伟,韩良,陈炽,王程,杨章,朱光耀,苏璞,菊卫东,汪蕾. 工作点对氮化镓微波功率器件交调特性影响研究. 空间电子技术. 2019(04): 1-5 . 百度学术
12. 刘燕丽,王伟,董燕,陈敦军,张荣,郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报. 2019(24): 294-300 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 8317
- PDF下载量: 336
- 被引次数: 16