搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料

张志荣 房玉龙 尹甲运 郭艳敏 王波 王元刚 李佳 芦伟立 高楠 刘沛 冯志红

引用本文:
Citation:

基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料

张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates

Zhang Zhi-Rong, Fang Yu-Long, Yin Jia-Yun, Guo Yan-Min, Wang Bo, Wang Yuan-Gang, Li Jia, Lu Wei-Li, Gao Nan, Liu Pei, Feng Zhi-Hong
PDF
导出引用
  • 研究了表面预处理对GaN同质外延的影响,获得了高电子迁移率AlGaN/GaN异质结材料.通过NH3/H2混合气体与H2交替通入反应室的方法对GaN模板和GaN半绝缘衬底进行高温预处理.研究结果表明,NH3/H2能够抑制GaN的分解,避免粗糙表面,但不利于去除表面的杂质,黄光带峰相对强度较高; H2促进GaN分解,随时间延长GaN分解加剧,导致模板表面粗糙不平,AlGaN/GaN HEMT材料二维电子气迁移率降低.采用NH3/H2混合气体与H2交替气氛模式处理模板或衬底表面,能够清洁表面,去除表面杂质,获得平滑的生长表面和外延材料表面,有利于提高AlGaN/GaN HEMT材料电学性能.在GaN衬底上外延AlGaN/GaN HEMT材料,2DEG迁移率达到2113 cm2/V·s,电学性能良好.
    Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN grown on a foreign substrate leads to poor crystal quality and device reliability.The homo-epitaxial growth of GaN material has low dislocation density,which is the foundation of high performance of AlGaN/GaN highelectronic mobility transistor.However,it is difficult to prepare flat surface of GaN template or GaN substrate in thermal treatment process under the metal-organic chemical vapor deposition (MOCVD) ambient condition in which hydrogen (H2) is commonly used to clean the substrate surface,i.e.,to remove impurities from the substrate surface,since H2 would greatly enhance GaN decomposition in MOCVD high-temperature condition and etch GaN into roughness surfaceIn this work,an alternation gas model of ammonia/hydrogen (NH3/H2) mixed gas and H2 gas is designed.This technique is used in a thermal treatment process of GaN template and substrate by MOCVD.Then,we in-situ grow AlGaN/GaN HEMTs (high electron mobility transistors) on GaN template and GaN substrate,respectively.A series of alternation gas samples with various H2 treatment times is investigated.Optical microscope and atomic force microscope are used to observe the morphologies of GaN template and AlGaN/GaN HEMTs and two-dimensional electron gas (2DEG) mobility and density of AlGaN/GaN HEMTs are measured by contactless Hall measurement.Optical properties of AlGaN/GaN HEMTs are analyzed by photoluminescence at room temperature.The residual impurities of C and O in the GaN epilayer and the interfacial region between GaN epilayer and GaN substrate are analyzed by secondary ion mass spectrometry.The study results show that H2 enhances GaN decomposition in MOCVD at high temperature,and GaN decomposition greatly strengthens with H2 treatment time increasing leading to rough surface and the decrease of 2DEG mobility.The NH3/2 mixed gas could suppress GaN decomposition and avoid roughn surface,but go against cleaning out the purity from GaN surface,and the relativive intensity of the yellow band is higher.The NH3/2 mixed gas and 2 gas alternate thermal treatment model with proper 2 treatment time on GaN template or GaN substrate,not only obtains atomically flat surface of GaN template and HEMT structure,but also cleans out the purity from GaN surface,which is conducive to the increase of the electric properties of HEMT material.The highest 2DEG mobility reaches to 2136 cm2/V·s with 1 min 2 treatment in the alternate gas thermal treatment process grown on GaN templates and the electrical properties of HEMT material turn excellent.Finally,an alternate model with 5 min NH3/2 mixed gas followed by 1 min 2 and then 4 min mixed gas of thermal treatment process is used,the surface morphology of HEMT grown on GaN substrate shows highly uniform atomically steps and the root-mean-square value is 0.126 nm for 2 μm×2 μm scan area;the HEMT 2DEG mobility 2113 cm2/V·s grown on GaN substrate shows good electric properties,the residual impurities of C and O in the interfacial region between GaN epilayer and GaN substrates are below 1×1017 cm-3,showing clean interfacial.
      通信作者: 房玉龙, yvloong@163.com
    • 基金项目: 国家重点研究发展计划(批准号:2017YFB0404100)资助的课题.
      Corresponding author: Fang Yu-Long, yvloong@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404100).
    [1]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [2]

    Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121

    [3]

    Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202

    [4]

    Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508

    [5]

    Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527

    [6]

    Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109

    [7]

    Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705

    [8]

    Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509

    [9]

    Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974

    [10]

    Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702

    [11]

    Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527

    [12]

    Bermudez V M 2004 Surf. Sci. 565 89

    [13]

    Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018

    [14]

    Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466

    [15]

    Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145

    [16]

    Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888

    [17]

    Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301

    [18]

    Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272

    [19]

    Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427

    [20]

    Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301

    [21]

    Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849

    [22]

    Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689

    [23]

    Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807

    [24]

    Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501

    [25]

    Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77

  • [1]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, L Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [2]

    Khan M A, Kuznia J N, Olson D T, Schaff W J 1994 Appl. Phys. Lett. 65 1121

    [3]

    Fang Y L, Feng Z H, Li C M, Song X B, Yin J Y, Zhou X Y, Wang Y G, L Y J, Cai S J 2015 Chin. Phys. Lett. 32 037202

    [4]

    Bajo M M, Hodges C, Uren M J, Kuball M 2012 Appl. Phys. Lett. 101 033508

    [5]

    Iwata S, Kubo S, Konishi M, Saimei T, Kurai S, Taguchi T, Kainosho K, Yokohata A 2003 Mat. Sci. Semicon. Proc. 6 527

    [6]

    Kotani J, Yamada A, Ishiguro T, Tomabechi S, Nakamura N 2016 Appl. Phys. Lett. 108 152109

    [7]

    Arslan E, Altındal Ş, Özçelik S, Ozbay E 2009 J. Appl. Phys. 105 023705

    [8]

    Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D 2007 Appl. Phys. Lett. 90 093509

    [9]

    Oshimura Y, Takeda K, Sugiyama1 T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T 2010 Phys. Status Solidi C 7 1974

    [10]

    Demchenko D O, Diallo I C, Reshchikov M A 2016 J. Appl. Phys. 119 035702

    [11]

    Koblmller G, Chu R M, Raman A, Mishra U K, Speck J S 2010 J. Appl. Phys. 107 043527

    [12]

    Bermudez V M 2004 Surf. Sci. 565 89

    [13]

    Koleske D D, Wickenden A E, Henry R L, Twigg M E, Culbertson J C, Gorman R J 1998 Appl. Phys. Lett. 73 2018

    [14]

    Koleske D D, Wickenden A E, Henry R L, Culbertson J C, Twigg M E 2001 J. Cryst. Growth 223 466

    [15]

    Fathallah W, Boufaden T, Jani B E 2007 Phys. Status Solidi C 4 145

    [16]

    Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V 2000 Appl. Phys. Lett. 77 2888

    [17]

    Chen J T, Hsu C W, Forsberg U, Janzén E 2015 J. Appl. Phys. 117 085301

    [18]

    Detchprohm T, Xia Y, Xi Y, Zhu M, Zhao W, Li Y, Schubert E F, Liu L, Tsvetkov D, Hanser D, Wetzel C 2007 J. Cryst. Growth 298 272

    [19]

    Zanato D, Gokden S, Balkan N, Ridley B K, Schaff W J 2004 Semicond. Sci. Techol. 19 427

    [20]

    Reshchikov M A, Morko H 2005 J. Appl. Phys. 97 061301

    [21]

    Ryou J H, Liu J P, Zhang Y, Horne C A, Lee W, Shen S C, Dupuis R D 2008 Phys. Status Solidi C 5 1849

    [22]

    Calleja E, Sánchez F J, Basak D 1997 Phys. Rev. B 55 4689

    [23]

    Khan A M, Yang J W, Knap W, Frayssinet E, Hu X, Simin G, Prystawko P, Leszczynski M, Grzegory I, Porowski S, Gaska R, Shur M S, Beaumont B, Teisseire M, Neu G 2000 Appl. Phys. Lett. 76 3807

    [24]

    Tomás A P, Fontserè A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C, Cordier Y 2013 J. Appl. Phys. 113 174501

    [25]

    Piotrowska A B, Kamińska E A, Wojtasiak W, Gwarek W, Kucharski R, Zajc M, Prystawko P, Kruszewski P, Ekielski M, Kaczmarski J, Kozubal M, Trajnerowicz A, Taube A 2016 ECS Trans. 75 77

  • [1] 李建军, 崔屿峥, 付聪乐, 秦晓伟, 李雨畅, 邓军. 具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用. 物理学报, 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 李丹, 李国庆. 氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响. 物理学报, 2018, 67(15): 157501. doi: 10.7498/aps.67.20180387
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [8] 李忠辉, 罗伟科, 杨乾坤, 李亮, 周建军, 董逊, 彭大青, 张东国, 潘磊, 李传皓. 金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善. 物理学报, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [9] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [10] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [11] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [12] 张李骊, 刘战辉, 修向前, 张荣, 谢自力. 氢化物气相外延生长高质量GaN膜生长参数优化研究. 物理学报, 2013, 62(20): 208101. doi: 10.7498/aps.62.208101
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [15] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [17] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [18] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
计量
  • 文章访问数:  5823
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-02-01
  • 刊出日期:  2018-04-05

/

返回文章
返回