搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响

李丹 李国庆

引用本文:
Citation:

氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响

李丹, 李国庆

Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate

Li Dan, Li Guo-Qing
PDF
导出引用
  • 用MgO和SiO2两种氧化物将FePt薄膜与Si(100)基片隔离,分析隔离层在FePt层发生A1 L10转变过程中的作用,寻找用Si母材涂敷L10-FePt磁性层来提高磁力显微镜针尖矫顽力的合理方案.采用磁控溅射法在400℃沉积FePt薄膜,在不同温度进行2 h的真空热处理,分析晶体结构和磁性的变化.结果表明:没有隔离层,Si基片表层容易发生扩散,50 nm厚FePt薄膜的矫顽力最大只有5 kOe(1 Oe=103/(4)Am-1);而插入隔离层,矫顽力可以超过10 kOe;MgO在Si基片上容易碎裂,热处理温度不能高于600℃,用作隔离层,FePt的最大矫顽力为12.4 kOe;SiO2与Si基片的晶格匹配更好,热膨胀系数差较小,能承受的最高热处理温度可以超过800℃,使得FePt的矫顽力可以在5 kOe到15 kOe范围内调控,更适合用于制作矫顽力高并可控的磁力显微镜针尖.
    Magnetic force microscope (MFM) is a powerful tool to subtly detect the stray field distribution of magnetic film or particles on a sub-micrometer scale. Due to its huge uniaxial magnetocrystalline anisotropy (Ku~7107 erg cm-3) and high Currie temperature (TC~500℃), FePt alloy in an L10 phase is expected to be coated on the MFM tip to display high coercive force (Hc) and to improve the magnetic stability and MFM resolution. A grain size of~3 nm will be enough to overcome the super paramagnetism. However, the growing fresh FePt films must experience a high temperature annealing (exceeding 700℃) in order to transform their structures thoroughly from a soft A1 phase into the desired hard L10 phase. This brings the risk of diffusion between FePt coating layer and the underneath Si cantilever. Several admixtures have been attempted by other researchers to obtain granular films with FePt grains separated by oxides, with the purpose to prevent the diffusion from happening between FePt and Si. But apparently, it will be very difficult to fabricate a separated FePt grain exactly on the top of MFM tip. This is a critical factor to affect the MFM resolution. And discussion about the influence of the interface diffusion is avoided in most of published papers. Alternatively, some oxide isolation layers with higher melting temperature can be useful for separating the top FePt film from the bottom Si crystal. In this paper, MgO and SiO2 are selected as isolation layers, deposited by magnetron sputtering. Subsequently, the FePt films are deposited at 400℃ and annealed at different temperatures (500℃ to 800℃) for 2 h. The experimental results indicate that the diffusion between FePt and Si substrate always occurs in the absence of any isolation layer, leading to a reluctant maximum Hc of~5 kOe for 50 nm FePt film. However, the coercive force could remarkably exceed 10 kOe if an isolation layer is used. In the case of MgO, a maximum Hc of~12.4 kOe for 50 nm FePt could be stably measured. However, the annealing temperature must be lower than 600℃ to hold back the occurrence of brittle cracks in isolation layer. Because of the smaller lattice mismatch and expansion coefficient difference between SiO2 isolation layer and Si substrate, the highest annealing temperature could exceed 800℃ when replacing MgO with SiO2. The Hc of FePt film could be adjusted in a range from~5 kOe to~15 kOe by changing the annealing temperature. These findings greatly benefit the fabrication of FePt-based MFM tips with high Hc. And it is expected to be able to effectively enhance the resolution of MFM image.
      通信作者: 李国庆, gqli@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51071132)资助的课题.
      Corresponding author: Li Guo-Qing, gqli@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071132).
    [1]

    Weller D, Mcdaniel T 2006 Advanced Magnetic Nanostructures-Media for Extremely High Density Recording (Boston MA: Springer) pp295-324

    [2]

    Suzuki T, Honda N, Ouchi K 1999 J. Appl. Phys. 85 4301

    [3]

    Moser A, Takano K, Margulies D T, Albrecht M, Sonobe Y, Ikeda Y, Sun S, Fullerton E E 2002 J. Phys. D: Appl. Phys. 35 R157

    [4]

    Piramanayagam S N, Srinivasan K 2009 J. Magn. Magn. Mater. 321 485

    [5]

    Coffey K R, Parker M A, Howard J K 1995 IEEE Trans. Magn. 31 2737

    [6]

    Gibson G A, Schultz S 1993 J. Appl. Phys. 73 4516

    [7]

    Martin Y, Wickramasinghe H K 1987 Appl. Phys. Lett. 50 1455

    [8]

    Senz J J, Garcia N, Grtter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber H R, Gntherodt H J 1987 J. Appl. Phys. 62 4293

    [9]

    Rugar D, Mamin H J, Guethner P, Lambert S E, Stern J E, McFadyen I, Yogi T 1990 J. Appl. Phys. 68 1169

    [10]

    Saito H, Miyazaki K, Ishio S 2002 J. Magn. Magn. Mater. 240 73

    [11]

    Saito H, Sunahara R, Rheem Y, Ishio S 2005 IEEE Trans. Magn. 41 4394

    [12]

    Phillips G N, Siekman M, Abelmann L, Lodder J C 2002 Appl. Phys. Lett. 81 865

    [13]

    Babcock K, Elings V, Dugas M, Loper S 1994 IEEE Trans. Magn. 30 4503

    [14]

    Amos N, Lavrenov A, Fernandez R, Ikkawi R, Litvinov D, Khizroev S 2009 J. Appl. Phys. 105 07D526

    [15]

    Amos N, Ikkawi R, Haddon R, Litvinov D, Khizroev S 2008 Appl. Phys. Lett. 93 203116

    [16]

    Zhang Y, Wan J, Skumryev V, Stoyanov S, Huang Y, Hadjipanayis G C, Weller D 2004 Appl. Phys. Lett. 85 5343

    [17]

    Luo C P, Liou S H, Gao L, Liu Y, Sellmyer D J 2000 Appl. Phys. Lett. 77 2225

    [18]

    Breitling A, Goll D 2008 J. Magn. Magn. Mater. 320 1449

    [19]

    Bauer U, Przybylski M, Kirschner J, Beach G S 2012 Nano Lett. 12 1437

    [20]

    Seki T, Shima T, Takanashi K, Takahashi Y, Matsubara E, Hono K 2003 Appl. Phys. Lett. 82 2461

    [21]

    Sun A C, Kuo P C, Chen S C, Chou C Y, Huang H L, Hsu J H 2004 J. Appl. Phys. 95 7264

    [22]

    Takahashi Y K, Koyama T, Ohnuma M, Ohkubo T, Hono K 2004 J. Appl. Phys. 95 2690

    [23]

    Kuo C M, Kuo P C, Wu H C, Yao Y D, Lin C H 1999 J. Appl. Phys. 85 4886

    [24]

    Yan M L, Powers N, Sellmyer D J 2003 J. Appl. Phys. 93 8292

    [25]

    Li G Q, Takahoshi H, Ito H, Saito H, Ishio S, Shima T, Takanashi K 2003 J. Appl. Phys. 94 5672

    [26]

    Speliotis T, Varvaro G, Testa A M, Giannopoulos G, Agostinelli E, Li W, Hadjipanayis G, Niarchos D 2015 Appl. Surf. Sci. 337 118

    [27]

    Rasmussen P, Rui X, Shield J E 2005 Appl. Phys. Lett. 86 191915

    [28]

    Suzuki T, Yanase S, Honda N, Ouchi K 1999 J. Magn. Soc. Jpn. 23 957

    [29]

    Li G Q, Zhu Y Y, Zhang Y, Zhao H J, Zeng D F, Li Y H, Lu W 2015 Appl. Phys. Lett. 106 082404

    [30]

    Li Y H, Zeng D F, Zhao H J, Du B, Wei J, Yoshimura S, Li G Q 2015 IEEE Trans. Magn. 51 4800503

    [31]

    Kaushik N, Sharma P, Tanaka S, Makino A, Esashi M 2015 Acta Phys. Pol. A 127 611

    [32]

    Makuta H, Iwama H, Shima T, Doi M 2017 Jpn. J. Appl. Phys. 56 055504

    [33]

    Schilling M, Ziemann P, Zhang Z, Biskupek J, Kaiser U, Wiedwald U 2016 Beilstein J. Nanotech. 7 591

  • [1]

    Weller D, Mcdaniel T 2006 Advanced Magnetic Nanostructures-Media for Extremely High Density Recording (Boston MA: Springer) pp295-324

    [2]

    Suzuki T, Honda N, Ouchi K 1999 J. Appl. Phys. 85 4301

    [3]

    Moser A, Takano K, Margulies D T, Albrecht M, Sonobe Y, Ikeda Y, Sun S, Fullerton E E 2002 J. Phys. D: Appl. Phys. 35 R157

    [4]

    Piramanayagam S N, Srinivasan K 2009 J. Magn. Magn. Mater. 321 485

    [5]

    Coffey K R, Parker M A, Howard J K 1995 IEEE Trans. Magn. 31 2737

    [6]

    Gibson G A, Schultz S 1993 J. Appl. Phys. 73 4516

    [7]

    Martin Y, Wickramasinghe H K 1987 Appl. Phys. Lett. 50 1455

    [8]

    Senz J J, Garcia N, Grtter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber H R, Gntherodt H J 1987 J. Appl. Phys. 62 4293

    [9]

    Rugar D, Mamin H J, Guethner P, Lambert S E, Stern J E, McFadyen I, Yogi T 1990 J. Appl. Phys. 68 1169

    [10]

    Saito H, Miyazaki K, Ishio S 2002 J. Magn. Magn. Mater. 240 73

    [11]

    Saito H, Sunahara R, Rheem Y, Ishio S 2005 IEEE Trans. Magn. 41 4394

    [12]

    Phillips G N, Siekman M, Abelmann L, Lodder J C 2002 Appl. Phys. Lett. 81 865

    [13]

    Babcock K, Elings V, Dugas M, Loper S 1994 IEEE Trans. Magn. 30 4503

    [14]

    Amos N, Lavrenov A, Fernandez R, Ikkawi R, Litvinov D, Khizroev S 2009 J. Appl. Phys. 105 07D526

    [15]

    Amos N, Ikkawi R, Haddon R, Litvinov D, Khizroev S 2008 Appl. Phys. Lett. 93 203116

    [16]

    Zhang Y, Wan J, Skumryev V, Stoyanov S, Huang Y, Hadjipanayis G C, Weller D 2004 Appl. Phys. Lett. 85 5343

    [17]

    Luo C P, Liou S H, Gao L, Liu Y, Sellmyer D J 2000 Appl. Phys. Lett. 77 2225

    [18]

    Breitling A, Goll D 2008 J. Magn. Magn. Mater. 320 1449

    [19]

    Bauer U, Przybylski M, Kirschner J, Beach G S 2012 Nano Lett. 12 1437

    [20]

    Seki T, Shima T, Takanashi K, Takahashi Y, Matsubara E, Hono K 2003 Appl. Phys. Lett. 82 2461

    [21]

    Sun A C, Kuo P C, Chen S C, Chou C Y, Huang H L, Hsu J H 2004 J. Appl. Phys. 95 7264

    [22]

    Takahashi Y K, Koyama T, Ohnuma M, Ohkubo T, Hono K 2004 J. Appl. Phys. 95 2690

    [23]

    Kuo C M, Kuo P C, Wu H C, Yao Y D, Lin C H 1999 J. Appl. Phys. 85 4886

    [24]

    Yan M L, Powers N, Sellmyer D J 2003 J. Appl. Phys. 93 8292

    [25]

    Li G Q, Takahoshi H, Ito H, Saito H, Ishio S, Shima T, Takanashi K 2003 J. Appl. Phys. 94 5672

    [26]

    Speliotis T, Varvaro G, Testa A M, Giannopoulos G, Agostinelli E, Li W, Hadjipanayis G, Niarchos D 2015 Appl. Surf. Sci. 337 118

    [27]

    Rasmussen P, Rui X, Shield J E 2005 Appl. Phys. Lett. 86 191915

    [28]

    Suzuki T, Yanase S, Honda N, Ouchi K 1999 J. Magn. Soc. Jpn. 23 957

    [29]

    Li G Q, Zhu Y Y, Zhang Y, Zhao H J, Zeng D F, Li Y H, Lu W 2015 Appl. Phys. Lett. 106 082404

    [30]

    Li Y H, Zeng D F, Zhao H J, Du B, Wei J, Yoshimura S, Li G Q 2015 IEEE Trans. Magn. 51 4800503

    [31]

    Kaushik N, Sharma P, Tanaka S, Makino A, Esashi M 2015 Acta Phys. Pol. A 127 611

    [32]

    Makuta H, Iwama H, Shima T, Doi M 2017 Jpn. J. Appl. Phys. 56 055504

    [33]

    Schilling M, Ziemann P, Zhang Z, Biskupek J, Kaiser U, Wiedwald U 2016 Beilstein J. Nanotech. 7 591

  • [1] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [3] 秦杰明, 曹建明, 蒋大勇. Mg0.57Zn0.43O合金薄膜生长及性能表征. 物理学报, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [4] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [5] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [6] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [7] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [9] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [10] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [11] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [13] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [14] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [15] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [16] 王淑华, 查超麟, 高 静, 马 斌, 张宗芝, 金庆原. c轴垂直取向FePt薄膜的磁和磁光性能研究. 物理学报, 2007, 56(3): 1719-1724. doi: 10.7498/aps.56.1719
    [17] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [18] 张丽娇, 蔡建旺, 孟凡斌, 李养贤. 缓冲层Ta对FePt薄膜L10有序相转变及矫顽力的影响. 物理学报, 2006, 55(1): 450-455. doi: 10.7498/aps.55.450
    [19] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  4521
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-04-13
  • 刊出日期:  2018-08-05

/

返回文章
返回