搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg0.57Zn0.43O合金薄膜生长及性能表征

秦杰明 曹建明 蒋大勇

引用本文:
Citation:

Mg0.57Zn0.43O合金薄膜生长及性能表征

秦杰明, 曹建明, 蒋大勇

Growth and characterization of the Mg0.57Zn0.43O alloy film

Qin Jie-Ming, Cao Jian-Ming, Jiang Da-Yong
PDF
导出引用
  • 本文利用金属有机气相沉积法(MOCVD)生长单一立方相Mg0.57Zn0.43O (记作立方MZO)合金薄膜, 以及该合金薄膜在后期热处理过程中质量和热稳定性的关系. 通过X射线衍射等测试发现, 后期热处理对于立方MZO合金薄膜质量具有较大的影响. 其中在500850℃的条件下, 合金薄膜的结晶质量和表面形貌随温度的增加得到明显的改善, 吸收截止边逐渐蓝移,带隙展宽, 但仍保持单一立方结构. 当温度达到950℃时立方MZO合金薄膜出现混合相. 通过对立方MZO合金薄膜制备的MSM型单元器件进行光响应的测试表明, 在外加15 V的偏压下, 器件的响应峰值在260 nm附近,紫外/可见抑制比大约为4个数量级, 饱和响应度为3.8 mA/W, 暗电流值为5 pA左右.
    We report the growth of single cubic phase Mg0.57Zn0.43O (MZO) alloy film through the method of metal organic chemical vapor deposition (MOCVD) and the relation between the quality and thermal stability of the alloy film after heat treatment. From X-ray measurement, we found that the quality of cubic MZO film was significantly influenced by the heating temperature. At 500-850℃, the crystallization and surface morphology of the alloy film were improved obviously as the temperature increased. Also, the blue shift of absorption cut-off edge, broadened band gap and maintained single cubic structure were found with increasing temperature. However, up to 950℃, mixed phases were formed in cubic MZO alloy film. For the photoresponse measurement of the MSM unit devices synthesized by the cubic MZO alloy film under 15 V bias, we found that the response peak of devices was around 260 nm, rejection ratio of UV/Vis was about 4 orders of magnitude, saturated responsibility was 3.8 mA/W and the value of dark current was about 5 pA.
    • 基金项目: 国家自然科学基金(批准号: 61106050, 21201022); 内蒙古自然科学基金(批准号: 2010MS0105)和吉林大学超硬材料国家重点实验室开放项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61106050, 21201022), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2010MS0105), and the Open Project of State Key Laboratory of Superhard Materials (Jilin University).
    [1]

    Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424

    [2]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T 2002 Appl. Phys. Lett. 80 1529

    [3]

    Park W I, Yi Y C, Jang H M 2001 Appl. Phys. Lett. 79 2022

    [4]

    Minemoto T, Negami T, Nishiwaki S, Takakura H, Hamakawa Y 2000 Thin. Solid. Films. 32 173

    [5]

    Chen J, Shen W Z, Chen N B, Qiu D J, Wu H Z 2003 J. Phys. C 15 475

    [6]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1999 Appl. Phys. Lett. 75 980

    [7]

    Xin P, Sun C W, Qin F W, Wen S P, Zhang Q Y 2007 Acta Phys. Sin. 56 1082 (in Chinese) [辛萍, 孙成伟, 秦福文, 文胜平, 张庆瑜 2007 物理学报 56 1082]

    [8]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 53 327

    [9]

    Lin B X, Fu Z X, Jia Y B, Liao G H 2001 Acta Phys. Sin. 50 2208 (in Chinese) [林碧霞, 傅竹西, 贾云波, 廖桂红 2001 物理学报 50 2208]

    [10]

    Qin J M, Wang H, Zeng F M, Li J L, Wan Y C, Liu J H 2010 Acta Phys. Sin. 59 8910 (in Chinese) [秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和 2010 物理学报 59 8910]

    [11]

    Choopun S, Vispute R D, Yan W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529

    [12]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z 2009 Appl. Phys. Lett. 94 101902

    [13]

    Bendersky L A, Takeuchi I, Chang K S, Yang W, Hullavarad S, Vispute R D 2005 J. Appl. Phys. 98 083526

  • [1]

    Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T 2003 Appl. Phys. Lett. 82 3424

    [2]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T 2002 Appl. Phys. Lett. 80 1529

    [3]

    Park W I, Yi Y C, Jang H M 2001 Appl. Phys. Lett. 79 2022

    [4]

    Minemoto T, Negami T, Nishiwaki S, Takakura H, Hamakawa Y 2000 Thin. Solid. Films. 32 173

    [5]

    Chen J, Shen W Z, Chen N B, Qiu D J, Wu H Z 2003 J. Phys. C 15 475

    [6]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1999 Appl. Phys. Lett. 75 980

    [7]

    Xin P, Sun C W, Qin F W, Wen S P, Zhang Q Y 2007 Acta Phys. Sin. 56 1082 (in Chinese) [辛萍, 孙成伟, 秦福文, 文胜平, 张庆瑜 2007 物理学报 56 1082]

    [8]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 53 327

    [9]

    Lin B X, Fu Z X, Jia Y B, Liao G H 2001 Acta Phys. Sin. 50 2208 (in Chinese) [林碧霞, 傅竹西, 贾云波, 廖桂红 2001 物理学报 50 2208]

    [10]

    Qin J M, Wang H, Zeng F M, Li J L, Wan Y C, Liu J H 2010 Acta Phys. Sin. 59 8910 (in Chinese) [秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和 2010 物理学报 59 8910]

    [11]

    Choopun S, Vispute R D, Yan W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529

    [12]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z 2009 Appl. Phys. Lett. 94 101902

    [13]

    Bendersky L A, Takeuchi I, Chang K S, Yang W, Hullavarad S, Vispute R D 2005 J. Appl. Phys. 98 083526

  • [1] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [2] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [3] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [4] 孙沛, 李建军, 邓军, 韩军, 马凌云, 刘涛. (Al0.1Ga0.9)0.5In0.5P材料的MOCVD生长温度窗口研究. 物理学报, 2013, 62(2): 026801. doi: 10.7498/aps.62.026801
    [5] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [6] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [7] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究. 物理学报, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [8] 严资杰, 袁 孝, 徐业彬, 高国棉, 陈长乐. 室温下Pr0.7Ca0.3MnO3薄膜的瞬态光响应特性. 物理学报, 2007, 56(10): 6080-6083. doi: 10.7498/aps.56.6080
    [9] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究. 物理学报, 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [10] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [11] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究. 物理学报, 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [12] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响. 物理学报, 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [13] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [14] 彭冬生, 冯玉春, 王文欣, 刘晓峰, 施 炜, 牛憨笨. 一种外延生长高质量GaN薄膜的新方法. 物理学报, 2006, 55(7): 3606-3610. doi: 10.7498/aps.55.3606
    [15] 潘教青, 赵 谦, 朱洪亮, 赵玲娟, 丁 颖, 王宝军, 周 帆, 王鲁峰, 王 圩. 长波长大应变InGaAs/InGaAsP分布反馈激光器的材料生长与器件制备. 物理学报, 2006, 55(10): 5216-5220. doi: 10.7498/aps.55.5216
    [16] 汪世林, 陈长乐, 王跃龙, 金克新, 王永仓, 任 韧, 宋宙模, 袁 孝. La2/3Ca1/3MnO3薄膜的光致电阻率变化特性. 物理学报, 2004, 53(2): 587-591. doi: 10.7498/aps.53.587
    [17] 袁洪涛, 张 跃, 谷景华. 原位生长高度定向ZnO晶须. 物理学报, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
    [18] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究. 物理学报, 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
    [19] 黄劲松, 董 逊, 刘祥林, 徐仲英, 葛维琨. AlInGaN材料的生长及其光学性质的研究. 物理学报, 2003, 52(10): 2632-2637. doi: 10.7498/aps.52.2632
    [20] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
计量
  • 文章访问数:  4498
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-17
  • 修回日期:  2013-03-09
  • 刊出日期:  2013-07-05

/

返回文章
返回