搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响

王波 房玉龙 尹甲运 刘庆彬 张志荣 郭艳敏 李佳 芦伟立 冯志红

引用本文:
Citation:

表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响

王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红

Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene

Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong
PDF
导出引用
  • 基于范德瓦耳斯外延生长的氮化镓/石墨烯材料异质生长界面仅靠较弱的范德瓦耳斯力束缚,具有低位错、易剥离等优势,近年来引起了人们的广泛关注.采用NH3/H2混合气体对石墨烯表面进行预处理,研究了不同NH3/H2比对石墨烯表面形貌、拉曼散射的影响,探讨了石墨烯在NH3和H2混合气氛下的表面预处理机制,最后在石墨烯上外延生长了1.6 μm厚的GaN薄膜材料.实验结果表明:石墨烯中褶皱处的C原子更容易与气体发生刻蚀反应,刻蚀方向沿着褶皱进行;适当NH3/H2比的混合气体对石墨烯进行表面预处理可有效改善石墨烯上GaN材料的晶体质量.本研究提供了一种可有效提高GaN晶体质量的石墨烯表面预处理方法,可为进一步研究二维材料上高质量的GaN外延生长提供参考.
    Due to the weak van der Waals interaction between GaN epitaxial layer and graphene substrate, GaN grown on graphene has attracted considerable attention in recent years, benefited from the possibility to grow epitaxial material without any necessity to satisfy the requirement for the lattice matching between the epitaxial materials and underlying materials, and the unique facility of transferring GaN epitaxy to other substrates. However, clusters formed in GaN grown on graphene lead to poor crystalline quality, deteriorating the applications of GaN epilayer on graphene. It is observed that preferential nucleation occurs primarily at the sites of defects and along the step edges of graphene. In order to study the effects of NH3/H2 ratio on the graphene/sapphire template and properties of GaN epilayer, the growth of GaN by metal organic chemical vapor deposition on the graphene/sapphire template pretreated with the mixed gas of NH3 and H2 is investigated.Prior to the deposition of GaN, five samples with different NH3/H2 flow ratios (0, 0.2, 0.5, 1 and 2, respectively) are pretreated at 1030℃ while the H2 flow rate is fixed at 3.6 mol/min. The surface topographies and Raman spectra of the pretreated graphene are investigated, and the chemical reaction mechanism is studied. It is found that the graphene is etched at the wrinkle firstly and then along the direction of wrinkles where there is bigger contact interface with NH3 and H2, and graphene decomposition is enhanced with the increase of NH3/H2 flow ratio. The pretreatment mechanisms of different mixed gases are also discussed. Owing to the weak bond energy, NH3 is easier to decompose than H2. The reaction between graphene and H, NH2 which are produced by the decomposition of NH3, enhances the etching of graphene.Finally GaN film is deposited on graphene/sapphire template pretreated by different NH3/H2 flow ratios. The quality of GaN was improved on graphene pretreated by appropriate NH3/H2 flow ratio and verified through highresolution X-ray diffraction.The lowest (002) and (102) full widths at half maximum (FWHM) of GaN obtained on graphene/sapphire template are 587 arcsec and 707 arcsec respectively, while the root-mean-square (RMS) of GaN is 0.37 nm. The stress of GaN is characterized by Raman spectra at room temperature. The co-presence of characteristic peaks of sapphire, graphene and GaN suggests that GaN has deposited on graphene/sapphire template. The E2-high Raman peak is used to estimate the residual stress in GaN material as described elsewhere. The E2-high peak of GaN grown on graphene is around 566.7 cm-1, while the value of strain-free GaN is 566.2 cm-1. Thus, there is subtle compressive stress in the GaN grown on graphene, which can be calculated from the relationship:△ωγ=4.3·σχχ cm-1·GPa-1, giving a value of 0.11 GPa of GaN obtained on graphene/sapphire template.This study provides an effective pretreatment technique to improve the crystal quality of GaN epilayer deposited on graphene/sapphire template, which gives guidance in well crystallizing three-dimensional materials on two-dimensional materials.
      通信作者: 房玉龙, yvloong@163.com
      Corresponding author: Fang Yu-Long, yvloong@163.com
    [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [6] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [7] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [8] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [9] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [12] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [15] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [16] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [19] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [20] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
计量
  • 文章访问数:  5448
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-07-19
  • 刊出日期:  2017-12-05

/

返回文章
返回