搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缩比间隙中辉光放电相似性的初步研究

付洋洋 罗海云 邹晓兵 刘凯 王新新

引用本文:
Citation:

缩比间隙中辉光放电相似性的初步研究

付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新

Preliminary study on similarity of glow discharges in scale-down gaps

Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin
PDF
导出引用
  • 为了研究缩比实验在气体放电中的有效性, 对缩比间隙中的低气压氩气放电进行了数值模拟. 根据气体放电相似性的猜想, 如果间隙气压p和间隙距离d的乘积为常量, 即p1d1=p2d2, 并且约化电场E/p 在两个间隙中的空间分布相同, 那么这两个放电间隙的放电特性存在相似性. 数值模拟中设置三个缩比间隙: 气隙A的长度为30 mm, 气压为1 Torr (1 Torr=133.322 Pa); 气隙B的长度为15 mm, 气压为2 Torr; 气隙C的长度为10 mm, 气压为3 Torr. 仿真结果表明, 三个间隙均为辉光放电, 并存在明显的阴极位降区. 间隙A, B, C 的阴极位降区的厚度dC分别为2.71, 1.35和0.87 mm, 相对应的pd值几乎相同, 即pdC≈2.70 Torr·mm. 这与氩气辉光放电Paschen曲线最低点(pd≈2.86 Torr·mm)相近. 缩比间隙的放电参数的特性(如工作电压、电场、电流密度、电子密度和离子密度的沿“空间”px的分布)的数值计算结果与放电相似性猜想所预计的结果一致. 所以, 可以认为放电相似性猜想适用于低气压氩气缩比间隙的辉光放电.
    In order to investigate the validity of the scale-down experiment on gas discharge, the discharge in argon at low pressure is numerically simulated with scale-down discharge gap based on the conjecture of discharge similarity that if the product of gas pressure p and gap length d is kept constant, p1d1=p2d2, and the spatial distributions of the reduced field E/p along these two gaps are the same, the gas discharges in these two discharge gaps would be similar. In the simulation, three scale-down discharge gaps are used. Gap A is 30 mm long and works at a pressure of 1 Torr (1 Torr=133.322 Pa). Gap B is 15 mm long at 2 Torr and gap C 10 mm long at 3 Torr. The results show that the discharges in these three gaps are glow discharges with a cathode fall layer. The values of thickness of the cathode fall layer, dC, for gaps A, B and C are 2.71 mm, 1.35 mm and 0.87 mm, respectively, which corresponds to more or less the same value of pdC≈2.70 Torr·mm that is close to the lowest point of Paschen curve of argon where pd≈2.86 Torr·mm. The proportionalities of the parameters (working voltage, electric field, current density, electron density and ion density) between the discharges in the scale-down gaps are found to be in good agreement with those determined by the discharge similarity. It is concluded that the conjecture of discharge similarity is correct for the glow discharge in argon in the scale-down gap.
    • 基金项目: 国家自然科学基金(批准号: 51377095, 51107067)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51377095, 51107067).
    [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Roth J R 2001 Industrial Plasma Engineering Volume II: Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [3]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [4]

    Bucalossi J, Brosset C, Garnier D, Grisolia C, Grosman A, Martin G, Laurent F S 2003 J. Nucl. Mater. 313-316 263

    [5]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [6]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [7]

    R Aymar, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519

    [8]

    Osmokrovic P, Zivic T, Loncar B, Vasic A 2007 IEEE Trans. on Plasma Science 35 100

    [9]

    Dekic S, Osmokrovic P, Vujisic M, Stankovic K 2010 IEEE Trans. on Dielectr. Electr. Insulat. 17 1185

    [10]

    Townsend J S 1915 Electricity in Gases (Oxford: ClarendonPress) p365

    [11]

    Paschen F 1889 Wiedemann Annalen der Physik und Chemie 37 69

    [12]

    Holm R 1924 Phys. Z. 25 497

    [13]

    Margenau H 1948 Phys. Rev. 73 197

    [14]

    Jones F L, Morgan G D 1951 Proc. Phys. Soc. Lond. B 64 560

    [15]

    Janasek D, Franzke J, Manz A 2006 Nature 442 374

    [16]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海: 复旦大学出版社)第75–80页]

    [17]

    Jong W S, Mark J K 1994 J. Appl. Phys. 75 1883

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Kolokolov N B, Blagoev A B 1993 Phys. Usp. 36 152

    [20]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [21]

    Pitchford L C, Phelps A V 1982 Phys. Rev. A 25 540

    [22]

    Lieberman M A, Lichtenberg A J (Translated by Pu Y K) 2007 Principles of Plasma Discharge and Materials Processing ( Beijing: Science Press) p421 ( in Chinese) [迈克尔·A 力伯曼, 阿伦·J 里登伯格著, 蒲以康译 2007 等离子体放电原理与材料处理(北京: 科学出版社)第421 页]

    [23]

    Yue Q Y, Jin H 1988 Radiation Protection 8 401 (in Chinese) [岳清宇, 金花 1988 辐射防护 8 401]

    [24]

    L B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [25]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.) pp275-301

    [26]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]

    [27]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [28]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [29]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [30]

    Montie T C, Wintenberg K K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [31]

    Bogaerts A, Neyts E, Gijbels R, van der Mullen J 2002 Spectrochim. Acta B 57 609

    [32]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

  • [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp76-239

    [2]

    Roth J R 2001 Industrial Plasma Engineering Volume II: Applications to Non-Thermal Plasma Processing (Bristol: Institute of Physics) pp1-2

    [3]

    Kim K M, Yang H L, Hong S H, Kim S T, Kim H T, Kim K P, Lee K S, Kim H K, Bak J S, Kstar Team 2009 Fusion Eng. Des. 84 1026

    [4]

    Bucalossi J, Brosset C, Garnier D, Grisolia C, Grosman A, Martin G, Laurent F S 2003 J. Nucl. Mater. 313-316 263

    [5]

    Wang Z W, Yan D H, Wang E Y 2002 Plasma Sci. Technol. 4 1165

    [6]

    Tomabechi K, Gilleland J R, Sokolov Y A, Toschi R, ITER Team 1991 Nucl. Fusion 31 1135

    [7]

    R Aymar, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519

    [8]

    Osmokrovic P, Zivic T, Loncar B, Vasic A 2007 IEEE Trans. on Plasma Science 35 100

    [9]

    Dekic S, Osmokrovic P, Vujisic M, Stankovic K 2010 IEEE Trans. on Dielectr. Electr. Insulat. 17 1185

    [10]

    Townsend J S 1915 Electricity in Gases (Oxford: ClarendonPress) p365

    [11]

    Paschen F 1889 Wiedemann Annalen der Physik und Chemie 37 69

    [12]

    Holm R 1924 Phys. Z. 25 497

    [13]

    Margenau H 1948 Phys. Rev. 73 197

    [14]

    Jones F L, Morgan G D 1951 Proc. Phys. Soc. Lond. B 64 560

    [15]

    Janasek D, Franzke J, Manz A 2006 Nature 442 374

    [16]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press) pp75-80 (in Chinese) [徐学基, 诸定昌 1996 气体放电物理(上海: 复旦大学出版社)第75–80页]

    [17]

    Jong W S, Mark J K 1994 J. Appl. Phys. 75 1883

    [18]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [19]

    Kolokolov N B, Blagoev A B 1993 Phys. Usp. 36 152

    [20]

    Yamabe C, Buckman S J, Phelps A V 1983 Phys. Rev. A 27 1345

    [21]

    Pitchford L C, Phelps A V 1982 Phys. Rev. A 25 540

    [22]

    Lieberman M A, Lichtenberg A J (Translated by Pu Y K) 2007 Principles of Plasma Discharge and Materials Processing ( Beijing: Science Press) p421 ( in Chinese) [迈克尔·A 力伯曼, 阿伦·J 里登伯格著, 蒲以康译 2007 等离子体放电原理与材料处理(北京: 科学出版社)第421 页]

    [23]

    Yue Q Y, Jin H 1988 Radiation Protection 8 401 (in Chinese) [岳清宇, 金花 1988 辐射防护 8 401]

    [24]

    L B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [25]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.) pp275-301

    [26]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 [邵先军, 马跃, 李娅西, 张冠军 2010 物理学报 59 8747]

    [27]

    Sima W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 660

    [28]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [29]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [30]

    Montie T C, Wintenberg K K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [31]

    Bogaerts A, Neyts E, Gijbels R, van der Mullen J 2002 Spectrochim. Acta B 57 609

    [32]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

  • [1] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究. 物理学报, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [2] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化. 物理学报, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [3] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [4] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真. 物理学报, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [6] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [7] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [8] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [9] 俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖. 针-板DBD微流注与微辉光交替生成的机理研究. 物理学报, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [10] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [11] 张颖, 何智兵, 闫建成, 李萍, 唐永建. 工作压强对硅掺杂辉光放电聚合物结构和性能的影响. 物理学报, 2011, 60(6): 066803. doi: 10.7498/aps.60.066803
    [12] 闫建成, 何智兵, 阳志林, 张颖, 唐永建, 韦建军. 射频功率对辉光放电聚合物结构和性能的影响. 物理学报, 2011, 60(3): 036501. doi: 10.7498/aps.60.036501
    [13] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [14] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [16] 张连珠, 高书侠. H2对N2直流辉光放电电子行为的影响. 物理学报, 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [17] 齐 冰, 任春生, 马腾才, 王友年, 王德真. 多针电晕增强大气压辉光放电稳定性研究. 物理学报, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [18] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [19] 王新新, 芦明泽, 蒲以康. 空气中大气压下均匀辉光放电的可能性. 物理学报, 2002, 51(12): 2778-2785. doi: 10.7498/aps.51.2778
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  5242
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2013-06-14
  • 刊出日期:  2013-10-05

/

返回文章
返回