搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面水滴附着对大气压氦气介质阻挡放电系统放电特性与化学分布的影响

蔡加禾 戴栋 潘泳全

引用本文:
Citation:

表面水滴附着对大气压氦气介质阻挡放电系统放电特性与化学分布的影响

蔡加禾, 戴栋, 潘泳全

The influence of surface-adhered water droplets on the discharge characteristics and chemical species distribution in an atmospheric-pressure helium dielectric barrier discharge system

CAI Jiahe, DAI Dong, PAN Yongquan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在大气压介质阻挡放电的某些应用场景中,待处理物表面附着的水滴会改变气隙宽度、介电分布、气相成分等条件,进而影响低温等离子体的应用效果。本文建立了大气压氦气介质阻挡放电仿真模型,探究了接触角为45°、90°、135°的水滴附着于待处理物表面时稳态放电结构与活性粒子分布受到的影响及其背后机制。结果表明,水滴表面与上方区域的稳态放电强度受到削弱,这是因为在负击穿中,水滴表面的极化电场增强了等离子体双极性扩散,促成环形放电抑制区;在次正放电阶段,水滴极化导致的种子电子清除效应抑制了水滴上方区域放电,上述放电抑制作用随水滴接触角变大而提升。在化学分布部分,待处理物和水滴表面的活性粒子与电子存在着协同分布关系,其中O与N的分布会因O2与N2键能的不同产生差异,OH与He+的分布则分别受到水滴蒸发与电场的影响。本文系统阐述了水滴附着对介质阻挡放电电化学过程的影响机制,为等离子体-液滴系统的相关应用提供了理论指导。
    Dielectric barrier discharge technology enables the generation of cold plasma at atmospheric pressure, which contains abundant active particles and shows great potential for fresh produce sterilization applications. However, water droplets frequently adhere to the surfaces of fruits and vegetables, which alters key parameters including the gas gap width, dielectric distribution, and gas-phase composition, consequently affecting the effectiveness of plasma applications. Currently, research on plasmadroplet interactions using contact angle as a variable remains unexplored, and the underlying mechanisms through which adhering droplets affect the electrochemical characteristics of dielectric barrier discharge await further investigation. In this work, we developed an atmospheric-pressure helium dielectric barrier discharge simulation model with a He-O2-N2-H2O reaction system. This model was used to study how water droplets (with contact angles of 45°, 90°, and 135°) adhering to the surface of the specimens affect both the steady-state discharge structure and active particle distribution, along with their underlying mechanisms. The results show that the steadystate discharge intensity is significantly weakened both at the droplet surface and in the region above it, with the maximum weakening observed at a contact angle of 135°. During the main positive breakdown phase, the polarized electric field at the droplet surface significantly enhances both electron impact ionization and secondary electron emission, thereby promoting gas-phase breakdown in the region above the water droplet; During the main negative breakdown phase, this polarized electric field accelerates electron migration toward the liquid surface, which intensifies plasma ambipolar diffusion and consequently leads to the formation of an annular discharge suppression zone around the water droplet; During the secondary positive discharge phase, while the water droplet becomes polarized, a radially inward electric field is generated near the liquid surface, the resulting seed electron scavenging effect suppresses discharge in the region above the water droplet. Due to the stronger polarized electric fields generated at the surfaces of water droplets with larger contact angles, both the discharge enhancement and suppression effects become more pronounced with increasing contact angle. Regarding the chemical species distribution, active particles and electrons exhibit a synergistic distribution relationship. On the surface of the specimens, He⁺ undergo electric fielddriven migration, resulting in a highly non-uniform spatial distribution; The evaporation of water droplets provides more reactant sources for OH generation, thereby increasing its total deposition quantity; Due to the lower bond energy of O2 versus N2, O demonstrates more uniform distribution and greater total deposition quantity than N. On the surface of water droplets, the active particles exhibit a gradually decreasing distribution from the center to the edge. Notably, the total deposition quantity of He⁺ continuously increases with larger contact angles due to the aggregation effect of the polarized electric field. This study systematically elucidates the influence mechanisms of adhering water droplets on the electrochemical processes in dielectric barrier discharge, providing theoretical guidance for relevant applications of plasma-droplet systems.
  • [1]

    Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001

    [2]

    Chen Z T, Chen G J, Obenchain R, Zhang R, Bai F, Fang T X, Wang H W, Lu Y J, Wirz R E, Gu Z 2022 Mater. Today 54 153

    [3]

    Poggemann H-F, Schüttler S, Schöne A L, Jeß E, Schücke L, Jacob T, Gibson A R, Golda J, Jung C 2025 J. Phys. D: Appl. Phys. 58 135208

    [4]

    Zhou B S, Zhao H G, Yang X, Cheng J-H 2024 Food Res. Int. 196 115117

    [5]

    Woedtke T, Laroussi M, Gherardi M 2022 Plasma Sources Sci. Technol. 31 054002

    [6]

    Moldgy A, Nayak G, Aboubakr H A, Goyal S M, Bruggeman P J 2020 J. Phys. D: Appl. Phys. 53 434004

    [7]

    Konchekov E M, Gusein-zade N, Burmistrov D E, Kolik L V, Dorokhov A S, Izmailov A Y, Shokri B, Gudkov S V 2023 Int. J. Mol. Sci. 24 15093

    [8]

    Hamdan A, Diamond J, Herrmann A 2021 J. Phys. Commun. 5 035005

    [9]

    Srivastava T, Simeni Simeni M, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010

    [10]

    Ling Y, Dai D, Chang J X, Wang B A 2024 Plasma Sci. Technol. 26 094002

    [11]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002

    [12]

    Toth J R, Abuyazid N H, Lacks D J, Renner J N, Sankaran R M 2020 ACS Sustainable Chem. Eng. 8 14845

    [13]

    Zhao Z G, Liu D P, Xia Y, Li G F, Niu C J, Qi Z H, Wang X, Zhao Z L 2022 Phys. Plasmas 29 043507

    [14]

    Wang X P, Zhao D M, Tan X M, Chen Y X, Chen Z H, Xiao H 2017 Chem. Eng. J. 328 708

    [15]

    Sebih L, Carbone E, Hamdan A 2025 J. Phys. D: Appl. Phys. 58 045206

    [16]

    Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207

    [17]

    Nayak G, Oinuma G, Yue Y F, Sousa J S, Bruggeman P J 2021 Plasma Sources Sci. Technol. 30 115003

    [18]

    Oinuma G, Nayak G, Du Y J, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 095002

    [19]

    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead J C, Murphy A B, Gutsol A F, Starikovskaia S 2012 J. Phys. D: Appl. Phys. 45 253001

    [20]

    Wang R X, Nian W F, Wu H Y, Feng H Q, Zhang K, Zhang J, Zhu W D, Becker K H, Fang J 2012 Eur. Phys. J. D 66 276

    [21]

    Yan A, Kong X H, Xue S, Guo P W, Chen Z T, Li D L, Liu Z W, Zhang H B, Ning W J, Wang R X 2024 Plasma Sources Sci. Technol. 33 105011

    [22]

    Konina K, Kruszelnicki J, Meyer M E, Kushner M J 2022 Plasma Sources Sci. Technol. 31 115001

    [23]

    Ning W J, Lai J, Kruszelnicki J, Foster J E, Dai D, Kushner M J 2021 Plasma Sources Sci. Technol. 30 015005

    [24]

    Meyer M, Nayak G, Bruggeman P J, Kushner M J 2022 J. Appl. Phys. 132 083303

    [25]

    Li D C, Li C, Liang T Y, Li J W, Yang Z W, Fu Q X, Zhang M, Yang Y, Yu K X, Du Y P, Zhao X G 2024 Phys. Fluids 36 122020

    [26]

    Adesina K, Lin T-C, Huang Y-W, Locmelis M, Han D 2024 IEEE Trans. Radiat. Plasma Med. Sci. 8 295

    [27]

    Massines F, Gouda G, Gherardi N, Duran M, Croquesel E 2001 Plasmas Polym. 6 35

    [28]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201

    [29]

    Wang Q, Dai D, Ning W J, Zhang Y H 2021 J. Phys. D: Appl. Phys. 54 115203

    [30]

    Sudarsan A, Keener K M 2022 LWT-Food Sci. Technol. 155 112903

    [31]

    Lee H, Kim J E, Chung M-S, Min S C 2015 Food Microbiol. 51 74

    [32]

    Ziuzina D, Misra N N, Han L, Cullen P J, Moiseev T, Mosnier J P, Keener K, Gaston E, Vilaró I, Bourke P 2020 Innov. Food Sci. Emerg. Technol. 59 102229

    [33]

    Min S C, Roh S H, Niemira B A, Boyd G, Sites J E, Uknalis J, Fan X T 2017 Food Microbiol. 65 1

    [34]

    Tan J Z, Karwe M V 2021 Innov. Food Sci. Emerg. Technol. 74 102868

    [35]

    Min S C, Roh S H, Niemira B A, Sites J E, Boyd G, Lacombe A 2016 Int. J. Food Microbiol. 237 114

    [36]

    Wang Q, Zhou X Y, Dai D, Huang Z N, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01

    [37]

    Lu L, Ku K-M, Palma-Salgado S P, Storm A P, Feng H, Juvik J A, Nguyen T H 2015 PLoS ONE 10 e0132841

    [38]

    Sipahioglu O, Barringer S A 2003 J. Food Sci. 68 234

    [39]

    Nelson S O 2003 IEEE Antennas Propag. Soc. Int. Symp. 4 46

    [40]

    Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201

    [41]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123509

    [42]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108

    [43]

    Wang Q 2022 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [王乔 2022 博士学位论文 (广州:华南理工大学)]

    [44]

    Lubarda V A, Talke K A 2011 Langmuir 27 10705

    [45]

    Wang Q, Ning W J, Dai D, Zhang Y H 2020 Plasma Process. Polym. 17 1900182

    [46]

    Zhou X Y, Wang Q, Dai D, Huang Z N 2021 Plasma Sci. Technol. 23 064003

    [47]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001

    [48]

    Yatom S, Dobrynin D 2022 J. Phys. D: Appl. Phys. 55 485203

    [49]

    Bruggeman P J, Iza F, Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002

    [50]

    Katsigiannis A S, Bayliss D L, Walsh J L 2022 Compr. Rev. Food Sci. Food Saf. 21 1086

    [51]

    Hasan M I, Walsh J L 2016 J. Appl. Phys. 119 203302

    [52]

    Chen X Y, Li Y H, Li M Q, Xiong Z L 2022 Plasma Sci. Technol. 24 124015

    [53]

    Yang X, Keener K M, Cheng J-H 2025 J. Food Eng. 388 112389

    [54]

    Mayer S E 1969 J. Phys. Chem. 73 3941

    [55]

    Lxcat program, Phelps database https://us.lxcat.net/data/set_databases.php [2024-11-16]

    [56]

    Hasan M I, Bradley J W 2015 J. Phys. D: Appl. Phys. 48 435201

  • [1] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [2] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, doi: 10.7498/aps.63.185208
    [3] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, doi: 10.7498/aps.62.135204
    [4] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.60.025216
    [5] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, doi: 10.7498/aps.60.065205
    [6] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, doi: 10.7498/aps.59.8739
    [7] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, doi: 10.7498/aps.59.1917
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [9] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, doi: 10.7498/aps.57.1802
    [10] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [11] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [12] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, doi: 10.7498/aps.56.7078
    [13] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [14] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [15] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, doi: 10.7498/aps.54.1295
    [16] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [17] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, doi: 10.7498/aps.54.4236
    [18] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  51
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回