搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气流对氮气介质阻挡放电气体温度及放电模式的影响

梁卓 罗海云 王新新 关志成 王黎明

引用本文:
Citation:

气流对氮气介质阻挡放电气体温度及放电模式的影响

梁卓, 罗海云, 王新新, 关志成, 王黎明

Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure

Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin
PDF
导出引用
  • 利用光谱测量和高速照相的方法,对大气压氮气介质阻挡放电进行了研究.在气流的帮助下,2 mm气隙中的均匀放电可以长时间得以维持.根据放电电流波形和1 μs曝光时间的放电图像,这种均匀放电被判定为汤森放电.用氦氖激光器对实验中所用的光谱仪带来的谱线轮廓展宽进行了标定,并将得到的仪器展宽数据输入Specair软件,计算了不同气体温度下氮分子二正系0—2谱带的谱线轮廓.通过用计算谱线轮廓去拟合实验谱线轮廓,确定了氮分子的转动温度并将其近似为气体温度.结果表明:大气压氮气介质阻挡汤森放电并不能使气体温度大幅上升(ΔTg≤50 K),气体温度的小幅上升不会引起热不稳定性而导致放电发展成为细丝放电.气流确实可以降低放电气体温度,但这不是使汤森放电得以维持的原因.通过比较加入气流前后的放电光谱可知,气流降低了气隙中杂质氧的含量,使得更多的氮分子亚稳态N2(A3Σ+u)的寿命延长到下一次放电的起始时刻,为汤森放电提供了必需的大量种子电子.
    Dielectric barrier discharge in nitrogen at atmospheric pressure is studied with the spectroscopy and the fast photography of the discharge. By the introduction of a nitrogen flow into the discharge gap, the homogeneous discharge in a 2 mm gap can be maintained. Based on the waveform of the discharge current characterized by a current pulse per half cycle of the applied voltage and the 1 μs exposure discharge photograph showing a luminous layer covering the entire surface of the anode, the homogeneous discharge is identified with a Townsend discharge. The instrumental broadening of the spectrometer used in the experiment is calibrated with a helium-neon laser. The data relevant to the instrumental broadening are input into a code called Specair for calculating the spectrum profiles of 0—2 band in the second positive system of nitrogen molecules at different gas temperatures. By fitting the calculated spectrum profiles to the experimental one, the rotational temperature of the nitrogen molecules is determined. The results show that the dielectric barrier Townsend discharge in nitrogen at atmospheric pressure cannot heat the nitrogen to a high temperature (ΔTg≤50 K) and the small rising in temperature does not induce the thermal instability that leads to the transition of the Townsend discharge to a filamentary discharge. By the addition of a gas flow into the discharge gap, the nitrogen is indeed cooled down to a lower temperature. However, it is not the reason for the Townsend discharge to be maintained. By comparing the discharge spectra with and without the gas flow, it could be concluded that the gas flow much reduces the density of the impurity oxygen desorbed from the dielectric by the discharge and makes it possible for more nitrogen metastables to survive to the beginning time of the next discharge and to provide sufficient seed electrons which are necessary for Townsend discharge.
    • 基金项目: 国家自然科学基金重点项目(批准号:50537020)资助的课题.
    [1]

    Roth J R 2001 Industrial Plasma Engineering (Vol.2) (Bristol and Philadelphia: Institute of Physics Publishing) pp37—46

    [2]

    Kogelschatz U 2003 Plasma Chem. Plasma Proc. 23 1

    [3]

    Wang X X 2009 High Voltage Engineering 35 1 (in Chinese) [王新新 2009 高电压技术 35 1]

    [4]

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys.Sin. 57 1001 (in Chinese) [李雪辰、贾彭英、刘志辉、李立春、董丽芳 2008 物理学报 57 1001]

    [5]

    Zhang Y, Gu B, Wang W C, Peng X W, Wang D Z 2009 Acta Phys.Sin. 58 5532 (in Chinese) [张 燕、顾 彪、王文春、彭许文、王德真 2009 物理学报 58 5532]

    [6]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. B 16 1089

    [7]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新、芦明泽、蒲以康 2002 物理学报 51 2778]

    [8]

    Gherardi N, Gouda G, Gat E, Ricard A, Massines F 2000 Plasma Sources Sci. Technol. 9 340

    [9]

    Gherardi N, Massines F 2001 IEEE Trans. Plasma Sci. 29 536

    [10]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2002 J. Phys. D 35 751

    [11]

    Bektursunova R 2004 IEEE Trans. Plasma Sci. 32 2069

    [12]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) p53

    [13]

    Gomes A M, Bacri J, Sarrette J P, Salon J 1992 J. Anal. At. Spectrosc. 7 1103

    [14]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [15]

    Gomes A M, Saloum S, Sarrette J P 2004 Plasma Chem. Plasma Proc. 24 239

    [16]

    Yanguas-Gil A, Focke K, Benedikt J, Keudell A 2007 J. Appl. Phys. 101 103307

    [17]

    Herzberg G 1983 Molecular Spectra and Molecular Structure (Vol. 1) (Beijing: Science Press) pp112—114 (in Chinese)[赫兹堡 G 1983 分子光谱与分子结构(第一卷)(中译本)(北京:科学出版社) 第112—114页]

    [18]

    Xiang Z L, Yu C X 1982 Plasma Diagnostic Techniques (Vol. 1)(Shanghai: Shanghai Science and Technology Press) pp83—86 (in Chinese) [项志遴、俞昌旋 1982 高温等离子体诊断技术(上卷)(上海:上海科学技术出版社)第83—86页]

    [19]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [20]

    Ionascut-Nedelcescu A, Carlone C, Kogelschatz U, Gravelle D V, Boulos M I 2008 J. Appl. Phys. 103 063305

    [21]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015

    [22]

    Brandenburg R, Maiorov V A, Golubovskii Y B, Wagner H E, Behnke J, Behnke J F 2005 J. Phys. D 38 2187

  • [1]

    Roth J R 2001 Industrial Plasma Engineering (Vol.2) (Bristol and Philadelphia: Institute of Physics Publishing) pp37—46

    [2]

    Kogelschatz U 2003 Plasma Chem. Plasma Proc. 23 1

    [3]

    Wang X X 2009 High Voltage Engineering 35 1 (in Chinese) [王新新 2009 高电压技术 35 1]

    [4]

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys.Sin. 57 1001 (in Chinese) [李雪辰、贾彭英、刘志辉、李立春、董丽芳 2008 物理学报 57 1001]

    [5]

    Zhang Y, Gu B, Wang W C, Peng X W, Wang D Z 2009 Acta Phys.Sin. 58 5532 (in Chinese) [张 燕、顾 彪、王文春、彭许文、王德真 2009 物理学报 58 5532]

    [6]

    Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. B 16 1089

    [7]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新、芦明泽、蒲以康 2002 物理学报 51 2778]

    [8]

    Gherardi N, Gouda G, Gat E, Ricard A, Massines F 2000 Plasma Sources Sci. Technol. 9 340

    [9]

    Gherardi N, Massines F 2001 IEEE Trans. Plasma Sci. 29 536

    [10]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2002 J. Phys. D 35 751

    [11]

    Bektursunova R 2004 IEEE Trans. Plasma Sci. 32 2069

    [12]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) p53

    [13]

    Gomes A M, Bacri J, Sarrette J P, Salon J 1992 J. Anal. At. Spectrosc. 7 1103

    [14]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [15]

    Gomes A M, Saloum S, Sarrette J P 2004 Plasma Chem. Plasma Proc. 24 239

    [16]

    Yanguas-Gil A, Focke K, Benedikt J, Keudell A 2007 J. Appl. Phys. 101 103307

    [17]

    Herzberg G 1983 Molecular Spectra and Molecular Structure (Vol. 1) (Beijing: Science Press) pp112—114 (in Chinese)[赫兹堡 G 1983 分子光谱与分子结构(第一卷)(中译本)(北京:科学出版社) 第112—114页]

    [18]

    Xiang Z L, Yu C X 1982 Plasma Diagnostic Techniques (Vol. 1)(Shanghai: Shanghai Science and Technology Press) pp83—86 (in Chinese) [项志遴、俞昌旋 1982 高温等离子体诊断技术(上卷)(上海:上海科学技术出版社)第83—86页]

    [19]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [20]

    Ionascut-Nedelcescu A, Carlone C, Kogelschatz U, Gravelle D V, Boulos M I 2008 J. Appl. Phys. 103 063305

    [21]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015

    [22]

    Brandenburg R, Maiorov V A, Golubovskii Y B, Wagner H E, Behnke J, Behnke J F 2005 J. Phys. D 38 2187

  • [1] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [2] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [3] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [4] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [5] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [6] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [7] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [8] 董丽芳, 杨丽, 李永辉, 张彦召, 岳晗. 空气介质阻挡放电单个微放电通道发光强度及振动激发温度的空间分布. 物理学报, 2009, 58(12): 8461-8466. doi: 10.7498/aps.58.8461
    [9] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [12] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [13] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [15] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [16] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [17] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
计量
  • 文章访问数:  8761
  • PDF下载量:  1126
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-29
  • 修回日期:  2010-06-25
  • 刊出日期:  2010-06-05

/

返回文章
返回