搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频容性耦合Ar/CF4等离子体源的多物理场三维仿真研究

李京泽 赵明亮 张钰如 高飞 王友年

引用本文:
Citation:

双频容性耦合Ar/CF4等离子体源的多物理场三维仿真研究

李京泽, 赵明亮, 张钰如, 高飞, 王友年

Three-dimensional multi-physics simulation of dual-frequency capacitively coupled Ar/CF4 plasma source

LI Jingze, ZHAO Mingliang, ZHANG Yuru, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 容性耦合等离子体源具备结构简单、造价低、能产生大面积均匀等离子体的优点,被广泛应用于半导体芯片制造的刻蚀、沉积等工艺中。为了满足先进生产工艺的需求,人们常常需要对等离子体源实施流体模拟,从而对等离子体的密度、均匀性等重要参数进行优化。本文采用自主研发的容性耦合等离子体快速模拟程序对双频容性耦合Ar/CF4等离子体源进行了三维流体模拟,以对程序在该问题中的有效性进行初步验证,并研究气压、高低频电压、低频频率、气体组分比例等放电参数对等离子体产生的影响。模拟结果显示,该程序具有极高的模拟速度;随着低频电压的增加,等离子体密度先近似不变,后显著增大,而等离子体的均匀性先上升,后显著下降,在此过程中低频电源带来的γ模式加热逐渐增加,直到取代高频电源的α模式加热成为主导;随着低频频率的增加,等离子体密度先近似不变,后略微增大,而等离子体的均匀性变化不大,这是因为低频电源的γ模式加热与频率无关,而α模式加热远远低于高频电源;随着高频电压的增加,等离子体密度显著增大,而等离子体的均匀性先上升,后显著下降,在此过程中高频电源的α模式加热显著增强;随着气压的增加,等离子体密度明显增大,同时等离子体的均匀性也明显上升,原因是粒子与背景气体间碰撞更为充分;随着背景气体中Ar比例的增加,等离子体密度变化较小,Ar相关粒子的密度总体呈上升趋势,CF4相关粒子的密度总体呈下降趋势,但部分粒子的密度变化存在非单调的情况,这体现了部分组分的电离、解离间具有相互促进的作用。
    Capacitively coupled plasma sources, which are widely used in the etching and deposition processes of semiconductor manufacturing, have the advantages of simple structure, low cost, and the ability to generate large-area uniform plasma. To meet the requirements of advanced processes, fluid models are usually required to simulate plasma sources and optimize their important plasma parameters, such as density and uniformity. In this paper, an independently-developed capacitive coupled plasma fast simulation program is employed to conduct three-dimensional fluid simulations of a dual-frequency capacitive coupled Ar/CF4 plasma source, with the aims of verifying the effectiveness of the program and investigating the influence of discharge parameters such as gas pressure, high and low-frequency voltages, low-frequency frequency, and background component ratios. The simulation results show that the program has an extremely high simulation speed. As the low-frequency voltage increases, plasma density initially remains approximately constant and then significantly increases, while plasma uniformity initially rises and then significantly decreases, the γ-mode heating of low-frequency source increases in this process, and becomes the dominant mode in replace of the α -mode of high-frequency source. As the lower frequency increases, plasma density initially remains approximately constant and then slightly increases, while plasma uniformity changes little, these are because the γ -mode heating is frequency independent, while the α -mode heating is much lower than that of high-frequency source. As the high-frequency voltage increases, plasma density significantly increases, while plasma uniformity initially rises and then significantly decreases, the α -mode heating of highfrequency source is significantly enhanced in this process. As the pressure increases, plasma density significantly increases, and plasma uniformity also rises significantly, the reason is the more complete collision between particles and background gases. As the Ar ratio in background gases increases, plasma density changes slightly, the densities of Ar-related particles generally increase and the densities of CF4-related particles generally decrease, although there are some non-monotonic changes in particle densities, which reflects the mutual promotion between some ionization and dissociation reactions.
  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp387—457

    [2]

    Wang Y N, Song Y H, Zhang Y R 2024 Fundamentals of Radio-frequency Plasma Physics (Beijing: Science Press) p236 (in Chinese)[王友年, 宋远红, 张钰如 2024 射频等离子体物理基础(北京: 科学出版社) 第 236 页]

    [3]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161

    [4]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308

    [5]

    Saikia P, Bhuyan H, Escalona M, Favre M, Rawat R S, Wyndham E 2018 AIP Adv. 8 045113

    [6]

    Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B, Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017

    [7]

    Vahedi V, DiPeso G, Birdsall C K, Lieberman M A, Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261

    [8]

    Wünderlich D, Gutser R, Fantz U 2009 Plasma Sources Sci. Technol. 18 045031

    [9]

    Passchier J D P, Goedheer W J 1993 J. Appl. Phys. 74 3744-3751

    [10]

    Alves L L, Marques L 2012 Plasma Phys. Controlled Fusion 54 124012

    [11]

    Graves D B 1987 J. Appl. Phys. 62 88-94

    [12]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013

    [13]

    Kushner M J 2007 IEEE Trans. Plasma Sci. 14 188-196

    [14]

    Yang Y, Kushner M J 2010 Plasma Sources Sci. Technol. 19 055011

    [15]

    Model Low-Temperature Plasma Sources with the Plasma Module https://www.comsol.com/plasma-module[2025-8-16]

    [16]

    Benchmark Model of a Capacitively Coupled Plasma https://www.comsol.com/model/benchmark-model-of-a-capacitively-coupled-plasma- 11745[2025-8-16]

    [17]

    Model of an Argon/Chlorine Inductively Coupled Plasma Reactor with RF Bias https://www.comsol.com/model/model-of-an-argonchlorine-inductively-coupledplasma-reactor-with-rf-bias-110171[2025-8-16]

    [18]

    Model of an Argon/Oxygen Capacitively Coupled Plasma Reactor https://www.comsol.com/model/model-of-an-argonoxygen-capacitively-coupledplasma-reactor-108931[2025-8-16]

    [19]

    Li J Z, Zhao M L, Zhang Y R, Gao F, Wang Y N 2025 Comput. Phys. Commun. 307 109392

    [20]

    Wen Y Y, Li X Y, Zhang Y R, Song Y H, Wang Y N 2022 J. Phys. D: Appl. Phys. 55 200001

    [21]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol., A 22 511-530

    [22]

    Zhang Y R, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 485204

  • [1] 张梦龙, 方川, 张子明, 李和平. 泵波作用下电离层等离子体中波-波、波-粒相互作用过程的数值模拟. 物理学报, doi: 10.7498/aps.74.20250788
    [2] 史寒旭, 李欣阳, 张钰如, 王友年. 超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟. 物理学报, doi: 10.7498/aps.74.20250341
    [3] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究. 物理学报, doi: 10.7498/aps.73.20240952
    [4] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [5] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, doi: 10.7498/aps.70.20201368
    [6] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, doi: 10.7498/aps.70.20210473
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [8] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, doi: 10.7498/aps.68.20190173
    [9] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, doi: 10.7498/aps.67.20181400
    [10] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, doi: 10.7498/aps.63.125202
    [11] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, doi: 10.7498/aps.62.175204
    [12] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, doi: 10.7498/aps.61.225203
    [13] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, doi: 10.7498/aps.60.125201
    [14] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, doi: 10.7498/aps.60.085206
    [15] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, doi: 10.7498/aps.58.7382
    [16] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, doi: 10.7498/aps.57.5081
    [17] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, doi: 10.7498/aps.57.3293
    [18] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, doi: 10.7498/aps.55.3519
    [19] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, doi: 10.7498/aps.55.4974
    [20] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, doi: 10.7498/aps.53.788
计量
  • 文章访问数:  40
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回