搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率热平衡感应耦合等离子体数值模拟及实验研究

牛越 包为民 李小平 刘彦明 刘东林

引用本文:
Citation:

大功率热平衡感应耦合等离子体数值模拟及实验研究

牛越, 包为民, 李小平, 刘彦明, 刘东林

Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma

Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin
PDF
HTML
导出引用
  • 感应耦合等离子体发生器是“临近空间高速目标等离子体电磁科学实验研究装置”的核心部件之一, 常用于模拟高焓高速等离子体鞘套环境, 为了研究大功率射频中压下感应耦合等离子体发生器的放电特性, 采用数值模拟和实验相结合的方法研究其内部的传热与流动特性. 本文基于局域热力学平衡条件, 通过湍流场-电磁场-温度场的多场耦合开展了功率为100—400 kW的大尺寸射频中压感应耦合等离子体的数值模拟, 并通过光强与光谱实验验证. 结果表明: 大功率等离子体发生器中的电磁场分布类似于中小型功率等离子体发生器; 放电能量耗散主要发生在感应线圈所在的区域; 石英管内壁温度在线圈所在处比其他区域较高, 等离子体呈环状高温结构; 等离子体受温差效应与电磁泵效应影响使得入口处产生回流涡. 同时开展相应条件下的放电实验发现氩气放电的轴向图像呈边缘高亮与中心暗的环状结构, 并通过光谱诊断系统测量氩等离子体的发射光谱, 得到发生器电子温度的空间分布, COMSOL仿真温度结果与放电图像光强、光谱测得电子温度较为符合, 验证了采用热力学平衡态条件进行数值模拟结果的有效性. 本文数值模拟的结果可用于感应耦合等离子体发生器的优化设计及耐温评估.
    Inductively coupled plasma generator is one of the core components of the near-space high-speed target plasma electromagnetic scientific experimental research device, which is often used to simulate high enthalpy and high speed plasma sheath environment. In order to study the discharge characteristics of inductively coupled plasma generator under high power, radio frequency and medium pressure, the numerical simulation and experiment are combined to study its internal heat transfer and flow characteristics in this paper. Based on the local thermodynamic equilibrium conditions, the numerical simulation of large-scale radio frequency and medium pressure inductively coupled plasma with a power of 100–400 kW is carried out through the multi-field coupling of flow, electromagnetic and temperature field, and verified by light intensity and spectrum experiment. The results show that the electromagnetic field distribution in the high-power thermal balance inductively coupled plasma generator is similar to that of the small- and medium-sized power plasma generator. The discharge energy dissipation occurs mainly in the area where the induction coil is located. The temperature of the inner wall of the quartz tube is higher at the coil location than in other areas, and the plasma has a ring-shaped high-temperature structure. The outer wall of the quartz tube is set to be the boundary condition of heat flux for simulating the temperature change of the quartz tube under cold blowing. This setting is in coincidence with factual situations. The wall temperature of the quartz tube at the entrance and at the induction coil section are found to be relatively high. When the large-size inductively coupled plasma generator works, an obvious return vortex is generated at the entrance due to the temperature difference and the electromagnetic pumping effect, and the exit velocity increases slightly with the increase of power. At the same time, the discharge experiment under the corresponding conditions shows that there is found a ring structure with bright edges and dark centers in the axial image of the argon discharge. Moreover, the emission spectrum of argon plasma is measured through the spectrum diagnosis system and the spatial distribution of the generator electron temperature is obtained. The light intensity of the discharge image and the electron temperature measured by the spectrum are found to be in comparative coincidence with the COMSOL simulation temperature result, demonstrating the validity of the numerical simulation results under thermodynamic equilibrium conditions. The numerical simulation results in this paper are also applicable to the optimization design and temperature resistance evaluation of the inductively coupled plasma generator.
      通信作者: 刘东林, donglinliu@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61627901)资助的课题
      Corresponding author: Liu Dong-Lin, donglinliu@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61627901)
    [1]

    龚旻, 谭杰, 李大伟, 马召, 田冠锁, 王暕来, 孟令涛 2018 宇航学报 39 1059Google Scholar

    Gong M, Tan J, Li D W, Ma Z, Tian G S, Wang J L, Meng L T 2018 J. Astronautics 39 1059Google Scholar

    [2]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 物理学报 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin. 64 175201Google Scholar

    [3]

    喻明浩 2019 物理学报 68 185202Google Scholar

    Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar

    [4]

    Mckelliget J W, El-Kaddah N 1987 MRS Proc. 98 21Google Scholar

    [5]

    Bernardi D, Colombo V, Ghedini E 2003 Eur. Phys. J. D 27 55Google Scholar

    [6]

    Ye R, Murphy A B, Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189Google Scholar

    [7]

    Watanabe T, Sugimoto N 2004 Thin Solid Films 457 201Google Scholar

    [8]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [9]

    Lei F, Li X P, Liu Y M 2018 AIP Adv. 8 015003Google Scholar

    [10]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. 12 478Google Scholar

    [11]

    马利斌 2019 硕士学位论文 (西安: 西安理工大学)

    Ma L B 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [12]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第29页

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing: Science Press) p29 (in Chinese)

    [13]

    王峰, 何立明, 兰宇丹, 杜宏亮, 俞健 2011 原子能科学技术 45 642

    Wang F, He L M, Lan Y D, Du H L, Yu J 2011 Atmo. Energ. Sci. Technol. 45 642

    [14]

    辛仁轩 2018 等离子体发射光谱分析 (北京: 化学工业出版社) 第46, 47页

    Xin R X 2005 Analysis of Plasma Emission Spectroscopy pp46, 47 (Beijing: Chemical Industry Press) (in Chinese)

    [15]

    刘丽萍, 王一光, 王国林, 罗杰, 马昊军 2018 航空学报 39 141Google Scholar

    Liu L P, Wang Y G, Wang G L, Luo J, Ma H J 2018 Acta Aeronautica et Astronautica Sinica 39 141Google Scholar

    [16]

    高鑫鑫, 华伟, 张弘, 常颖 2019 四川大学学报 (自然科学版) 56 703Google Scholar

    Gao X X, Hua W, Zhang H, Chang Y 2019 J. Sichuan Univ.: Nat. Sci. Ed. 56 703Google Scholar

    [17]

    朱海龙, 童洪辉, 叶高英, 陈伦江 2012 核聚变与等离子体物理 32 199Google Scholar

    Zhu H L, Tong H H, Ye G Y, Chen L J 2012 Nucl. Fus. Plas. Phys. 32 199Google Scholar

    [18]

    金星, 段发鑫, 张晶晶, 张哲, 廖杨凡 2018 质谱学报 39 192Google Scholar

    Jin X, Duan F X, Zhang J J, Zhang Z, Liao Y F 2018 J. Chin. Mass Spectr. Soc. 39 192Google Scholar

    [19]

    贾瑞宝, 罗天勇, 陈伦江 2018 核聚变与等离子体物理 38 473Google Scholar

    Jia R B, Luo T Y, Chen L J 2018 Nucl. Fus. Plas. phys. 38 473Google Scholar

    [20]

    Ikhlef N, Leroy O, Mekideche M R 2015 Contrib. Plasma Phys. 54 735Google Scholar

    [21]

    李伟斌, 熊永红 2003 物理实验 23 9

    Li W B, Xiong Y H 2003 Physics Experimentation 23 9

  • 图 1  感应耦合等离子体发生器二维模型图

    Fig. 1.  Two-dimensional model diagram of inductively coupled plasma torch

    图 2  (a) 发生器; (b) 进气口; (c) 线圈区域网格划分图

    Fig. 2.  Grid diagram of (a) plasma torch, (b) inlet, (c) coil

    图 3  400 kW等离子体内的(a)磁场和(b)电场分布

    Fig. 3.  (a) Magnetic field and (b) electric field distribution in the 400 kW plasma torch

    图 9  不同功率下石英管内壁面的温度分布

    Fig. 9.  Temperature distribution of quartz tube wall with different power

    图 4  功率与磁场强度和电场强度最大值关系图

    Fig. 4.  Relationship between power and the maximum intensity of magnetic field and electric field

    图 5  (a) 100 kW, (b) 200 kW, (c) 300 kW, (d) 400 kW等离子体内的温度分布

    Fig. 5.  (a) 100 kW, (b) 200 kW, (c) 300 kW, (d) 400 kW plasma torch temperature distribution

    图 6  400 kW等离子体内的焦耳热分布

    Fig. 6.  Joule heat distribution in 400 kW plasma torch

    图 7  400 kW等离子体速度分布

    Fig. 7.  400 kW plasma velocity distribution

    图 8  不同功率下中心轴线速度分布

    Fig. 8.  Center axis velocity distribution with different power

    图 10  放电图像采集实验装置示意图

    Fig. 10.  Schematic diagram of the experimental device

    图 11  氩气ICP放电图像

    Fig. 11.  Argon gas ICP discharge image

    图 12  归一化后仿真温度与放电图像的光强曲线对比

    Fig. 12.  Normalization of simulated temperature and light intensity curve of discharge image

    图 13  光谱实验装置图

    Fig. 13.  Diagram of spectroscopy experimental device

    图 14  径向辐射强度分布

    Fig. 14.  Radial radiation intensity distribution

    图 15  等离子体径向激发温度 (a) r = 30 mm, ${T_{\rm e}} = 1.103 \times{10^4}$ K; (b) r = 60 mm; ${T_{\rm e}} = 1.199 \times {10^4}$ K; (c) r = 70 mm, ${T_{\rm e}} = 1.136 \times {10^4}$ K

    Fig. 15.  Radial plasma excitation temperature: (a) r = 30 mm, ${T_{\rm e}} = 1.103 \times {10^4}$ K; (b) r = 60 mm, ${T_{\rm e}} = 1.199 \times {10^4}$ K; (c) r = 70 mm ${T_{\rm e}} = 1.136 \times {10^4}$ K

    图 16  仿真温度与实验温度对比图

    Fig. 16.  Comparison of simulated temperature and experimental temperature

    表 1  基本计算参数

    Table 1.  Basic calculation parameters.

    序号模拟参数数值
    1入口质量流/(g·s-1)10
    2气压/Pa1000
    3线圈功率/kW100—400
    4频率/kHz440
    5湍流强度0.05
    6湍流长度/m0.01
    下载: 导出CSV

    表 2  原子Ar I谱线的光谱学数据

    Table 2.  Spectroscopic data of atomic Ar I spectral line.

    λ/nmAki/s–1Ek/eVgk
    912.31.89 × 10712.913
    801.59.30 × 10613.105
    842.52.15 × 10713.125
    922.55.00 × 10613.205
    826.51.53 × 10713.363
    下载: 导出CSV

    表 A1  氩等离子体的热力学与输运性质(0.01 atm, 热力学平衡)

    Table A1.  Thermodynamics and transport properties of argon plasma (0.01 atm, Thermodynamic equilibrium).

    温度/K密度/(kg·m–3)定压比热/(J·kg–1·K–1)黏度/(Pa·s)热导率/(W·m–1·K–1)电导率/(S·m–1)
    1000$4.87\times10^{-3}$$5.21\times10^{2}$$ 6.94\times10^{-5}$$5.42\times10^{-2}$$0\times 10^{0}$
    2000$2.43\times10^{-3}$$5.21\times10^{2}$$ 1.03\times10^{-4}$$8.04\times10^{-2}$$1.09\times 10^{-10}$
    3000$1.62\times10^{-3}$$5.21\times10^{2}$$ 1.32\times10^{-4}$$1.03\times10^{-1}$$6.06\times 10^{-4} $
    4000$1.22\times10^{-3}$$5.21\times10^{2}$$ 1.58\times10^{-4}$$1.24\times10^{-1}$$8.44\times 10^{-1} $
    5000$9.73\times10^{-4}$$5.22\times10^{2}$$ 1.84\times10^{-4}$$1.45\times10^{-1}$$4.31\times 10^{1} $
    6000$8.10\times10^{-4}$$5.49\times10^{2}$$ 2.08\times10^{-4}$$1.80\times10^{-1}$$3.05\times 10^{2} $
    7000$6.93\times10^{-4}$$7.48\times10^{2}$$ 2.31\times10^{-4}$$2.61\times10^{-1}$$9.17\times 10^{2} $
    8000$5.98\times10^{-4}$$1.60\times10^{3}$$ 2.46\times10^{-4}$$4.54\times10^{-1}$$1.60\times 10^{3} $
    9000$5.07\times10^{-4}$$4.14\times10^{3}$$ 2.26\times10^{-4}$$8.48\times10^{-1}$$2.26\times 10^{3} $
    10000$4.04\times10^{-4}$$9.28\times10^{3}$$ 1.51\times10^{-4}$$1.50\times10^{0}$$2.88\times 10^{3} $
    11000$3.00\times10^{-4}$$1.48\times10^{4}$$ 6.99\times10^{-5}$$1.98\times10^{0}$$3.46\times 10^{3} $
    12000$2.29\times10^{-4}$$1.13\times10^{4}$$ 2.65\times10^{-5}$$1.56\times10^{0}$$3.95\times 10^{3} $
    13000$1.95\times10^{-4}$$4.96\times10^{3}$$ 1.19\times10^{-5}$$1.06\times10^{0}$$4.37\times 10^{3} $
    14000$1.76\times10^{-4}$$2.41\times10^{3}$$ 8.18\times10^{-5}$$9.32\times10^{-1}$$4.76\times 10^{3} $
    15000$1.63\times10^{-4}$$1.94\times10^{3}$$ 7.59\times10^{-5}$$9.86\times10^{-1}$$5.15\times 10^{3} $
    下载: 导出CSV
  • [1]

    龚旻, 谭杰, 李大伟, 马召, 田冠锁, 王暕来, 孟令涛 2018 宇航学报 39 1059Google Scholar

    Gong M, Tan J, Li D W, Ma Z, Tian G S, Wang J L, Meng L T 2018 J. Astronautics 39 1059Google Scholar

    [2]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 物理学报 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin. 64 175201Google Scholar

    [3]

    喻明浩 2019 物理学报 68 185202Google Scholar

    Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar

    [4]

    Mckelliget J W, El-Kaddah N 1987 MRS Proc. 98 21Google Scholar

    [5]

    Bernardi D, Colombo V, Ghedini E 2003 Eur. Phys. J. D 27 55Google Scholar

    [6]

    Ye R, Murphy A B, Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189Google Scholar

    [7]

    Watanabe T, Sugimoto N 2004 Thin Solid Films 457 201Google Scholar

    [8]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [9]

    Lei F, Li X P, Liu Y M 2018 AIP Adv. 8 015003Google Scholar

    [10]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. 12 478Google Scholar

    [11]

    马利斌 2019 硕士学位论文 (西安: 西安理工大学)

    Ma L B 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [12]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第29页

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing: Science Press) p29 (in Chinese)

    [13]

    王峰, 何立明, 兰宇丹, 杜宏亮, 俞健 2011 原子能科学技术 45 642

    Wang F, He L M, Lan Y D, Du H L, Yu J 2011 Atmo. Energ. Sci. Technol. 45 642

    [14]

    辛仁轩 2018 等离子体发射光谱分析 (北京: 化学工业出版社) 第46, 47页

    Xin R X 2005 Analysis of Plasma Emission Spectroscopy pp46, 47 (Beijing: Chemical Industry Press) (in Chinese)

    [15]

    刘丽萍, 王一光, 王国林, 罗杰, 马昊军 2018 航空学报 39 141Google Scholar

    Liu L P, Wang Y G, Wang G L, Luo J, Ma H J 2018 Acta Aeronautica et Astronautica Sinica 39 141Google Scholar

    [16]

    高鑫鑫, 华伟, 张弘, 常颖 2019 四川大学学报 (自然科学版) 56 703Google Scholar

    Gao X X, Hua W, Zhang H, Chang Y 2019 J. Sichuan Univ.: Nat. Sci. Ed. 56 703Google Scholar

    [17]

    朱海龙, 童洪辉, 叶高英, 陈伦江 2012 核聚变与等离子体物理 32 199Google Scholar

    Zhu H L, Tong H H, Ye G Y, Chen L J 2012 Nucl. Fus. Plas. Phys. 32 199Google Scholar

    [18]

    金星, 段发鑫, 张晶晶, 张哲, 廖杨凡 2018 质谱学报 39 192Google Scholar

    Jin X, Duan F X, Zhang J J, Zhang Z, Liao Y F 2018 J. Chin. Mass Spectr. Soc. 39 192Google Scholar

    [19]

    贾瑞宝, 罗天勇, 陈伦江 2018 核聚变与等离子体物理 38 473Google Scholar

    Jia R B, Luo T Y, Chen L J 2018 Nucl. Fus. Plas. phys. 38 473Google Scholar

    [20]

    Ikhlef N, Leroy O, Mekideche M R 2015 Contrib. Plasma Phys. 54 735Google Scholar

    [21]

    李伟斌, 熊永红 2003 物理实验 23 9

    Li W B, Xiong Y H 2003 Physics Experimentation 23 9

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231953
    [2] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [3] 王新波, 白鹤, 孙勤奋, 殷新社, 张洪太, 崔万照. 真空罐穿舱法兰介质微放电的实验研究. 物理学报, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [4] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [5] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [6] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [7] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [8] 殷鹏飞, 张蓉, 熊江涛, 李京龙. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究. 物理学报, 2013, 62(1): 018102. doi: 10.7498/aps.62.018102
    [9] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [10] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [11] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [12] 杨 静, 郄秀书, 王建国, 赵 阳, 张其林, 袁 铁, 周筠珺, 冯桂力. 雷电在水平导体中产生感应电压的观测及数值模拟研究. 物理学报, 2008, 57(3): 1968-1975. doi: 10.7498/aps.57.1968
    [13] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [14] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [15] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [18] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [19] 段耀勇, 郭永辉, 王文生, 邱爱慈. Z箍缩等离子体不稳定性的数值研究. 物理学报, 2004, 53(10): 3429-3434. doi: 10.7498/aps.53.3429
    [20] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
计量
  • 文章访问数:  4828
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-12-09
  • 上网日期:  2021-04-15
  • 刊出日期:  2021-05-05

/

返回文章
返回