搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压脉冲放电等离子体射流特性及机理研究

张亚容 韩乾翰 郭颖 张菁 石建军

引用本文:
Citation:

大气压脉冲放电等离子体射流特性及机理研究

张亚容, 韩乾翰, 郭颖, 张菁, 石建军

Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge

Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun
PDF
HTML
导出引用
  • 通过实验和数值模拟研究了大气压脉冲放电等离子体射流, 其中在脉冲电压上升沿阶段的放电中形成等离子体子弹并向接地电极输运, 其传播速度在104 m·s–1量级. 数值模拟研究还发现等离子体子弹邻近区域内增强的电场强度可达到106 V·m–1, 说明等离子体子弹的形成主要由放电空间局域增强的电场导致, 在接地电极附近会得到进一步增强. 放电空间的电子密度时空演变过程揭示了等离子体子弹经过的区域会保持较高的电子密度, 说明等离子体子弹的拖尾现象; 而等离子体子弹头部增强的电子产生率与局域增强的电场强度对应, 这说明了等离子体子弹产生的动力学过程. 该大气压脉冲放电等离子体射流中等离子体子弹的特性和机理研究为发展大气压等离子体射流提供了理论和技术基础.
    Atmospheric pressure plasma plume generated by pulsed discharge is studied by experimental diagnostics and numerical simulations. It is found that the plasma plume is generated in the rising phase of pulse voltage, in which a plasma bullet propagates toward the ground electrode at a speed on the order of 104 m/s. It is also found that the electric field in the vicinity of the plasma bullet reaches 106 V/m, indicating that the formation of plasma bullet can be attributed to the localized enhanced electric field, which will be enhanced near to the grounded electrode. The spatiotemporal evolution of electron density in the discharge reveals that the residual electron density remains after the plasma bullet has passed through, which explains the tailing phenomenon of plasma bullet. The enhanced electron generation rate at the head of plasma bullet corresponds to the localized enhanced electric field, which explains the generation mechanism of plasma bullet. This study of the characteristics and mechanism of plasma bullet provides a theoretical basis for developing the atmospheric plasma plume generated by pulsed discharge.
      通信作者: 石建军, JShi@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875104, 11475043)资助的课题
      Corresponding author: Shi Jian-Jun, JShi@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875104, 11475043)
    [1]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [2]

    Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D: Appl. Phys. 42 055207Google Scholar

    [3]

    Zhu P, Meng Z Z, Hu H X, Ouyang J T 2017 Phys. Plasmas 24 103512Google Scholar

    [4]

    Algwari Q T, O’Connell D 2011 Appl. Phys. Lett. 99 121501Google Scholar

    [5]

    O’Neill F T, Twomey B, Law V J, Milosavljevic V, Kong M G, Anghel S D, Dowling D P 2012 IEEE Trans. Plasma Sci. 40 2994Google Scholar

    [6]

    Liu W, Li Z, Ma C, Zhao L 2017 J. Phys. D: Appl. Phys. 50 415201Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar

    [9]

    Shaw D, West A, Bredin J, Wagenaars E 2016 Plasma Sources Sci. Technol. 25 65018Google Scholar

    [10]

    Nikiforov A Y 2009 IEEE Trans. Plasma Sci. 37 872Google Scholar

    [11]

    Sun J K, Chung T H 2016 Sci. Rep. 6 20332Google Scholar

    [12]

    Wang R X, Zhang C, Shen Y, Zhu W D, Yan P, Shao T, Babaeva N Y, Naidis G V 2015 J. Appl. Phys. 118 123303Google Scholar

    [13]

    Shi J J, Zhong F C, Zhang J 2008 Phys. Plasmas 15 013504Google Scholar

    [14]

    Rong M Z, Xia W J, Wang X H, Liu Z J, Liu D X, Liang Z H, Zhang X N, Kong M G 2017 Appl. Phys. Lett. 111 074104Google Scholar

    [15]

    Liu Z J, Zhou C X, Liu D X, Xu D H, Xia W J, Cui Q J, Wang B C, Kong M G 2018 Phys. Plasmas 25 013528Google Scholar

    [16]

    Breden D, Miki K, Raja L L 2011 Appl. Phys. Lett. 99 111501Google Scholar

    [17]

    Hofmans M, Viegas P, Rooij O V, Klarenaar B, Guaitella O, Bourdon A, Sobota A 2020 Appl. Phys. Express 13 086001Google Scholar

    [18]

    Sun Z T, Yan W, Ji L F, Bi Z H, Song Y, Liu D P 2018 Plasma Sci. Technol. 20 085401Google Scholar

    [19]

    Song S T, Guo Y, Choe W, Zhang J, Zhang J, Shi J J 2012 Phys. Plasmas 19 123508Google Scholar

    [20]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [21]

    Sakiyama Y, Graves D B, Stoffels E 2008 J. Phys. D: Appl. Phys. 41 095204Google Scholar

    [22]

    Karakas E, Akman M A, Laroussi M 2012 Plasma Sources Sci. Technol. 21 034016Google Scholar

    [23]

    Xian Y B, Xu H T, Lu X P, Pei X K, Gong W W, Lu Y, Liu D W, Yang Y 2015 Phys. Plasmas 22 063507Google Scholar

  • 图 1  (a)放电结构示意图; 典型等离子体子弹的(b)实验拍摄照片和(c)数值模拟结果

    Fig. 1.  (a) Schematic setup of discharge; typical appearance of plasma bullet (b) taken in experiments and (c) numerically simulated.

    图 2  实验测量脉冲放电等离子体射流时空演变图

    Fig. 2.  Temporal-spatial evolution profile of pulsed discharge plasma plume experimentally measured by optical emission.

    图 3  数值模拟脉冲放电等离子体射流中He+密度的时空演变图

    Fig. 3.  Temporal-spatial evolution profile of simulated He+ density in pulsed discharge plasma plume.

    图 4  实验测量和数值模拟等离子体子弹在介质管中的传播速率

    Fig. 4.  Measured and simulated velocities of plasma bullet in dielectric tube.

    图 5  (a) 等离子体子弹在不同位置处的轴向电场强度分布; (b) 等离子体子弹阶段电场强度的时空分布; (c) 等离子体子弹周边典型的电场强度分布

    Fig. 5.  (a) Spatial profiles of the electric field of plasma bullets at different positions; (b) spatiotemporal evolution of the electric field with the existing of plasma bullet; (c) typical electric field distribution in the domain near the plasma bullet.

    图 6  (a) 电子密度和 (b) 0.2—0.4 μs阶段电子产生率的时空分布

    Fig. 6.  Spatiotemporal profile of (a) electron density and (b) electron generation rate in 0.2–0.4 μs.

    表 1  反应方程和速率

    Table 1.  Elementary reaction and rates.

    反应反应速率
    He + e → He* + e$2.308 \times {10^{ - 10} }T_{\rm{e} } ^{0.31}\exp \left( { - \dfrac{ {2.297 \times { {10}^5} } }{ { {T_{\rm{e} } } } } } \right)$/(cm3·s–1)
    He + e → He+ + 2e$2.584 \times {10^{ - 12} }T_{\rm{e} } ^{0.68}\exp \left( { - \dfrac{ {2.854092 \times { {10}^5} } }{ { {T_{\rm{e} } } } } } \right)$/(cm3·s–1)
    He* + e → He+ + 2e$4.661 \times {10^{ - 10} }T_{\rm{e} } ^{0.6}\exp \left( { - \dfrac{ {5.546 \times { {10}^4} } }{ { {T_{\rm{e} } } } } } \right)$/(cm3·s–1)
    ${\rm{He}}_2^+ $ + e → He* + He$5.386 \times {10^{ - 7}}{T_{\rm{e}}}^{ - 0.5}$/(cm3·s–1)
    He+ + 2He → ${\rm{He}}_2^+ $ + He1.1 × 10–31/(cm6·s–1)
    He* + 2He → ${\rm{He}}_2^* $ + He1.3 × 10–33/(cm6·s–1)
    He* + e → He + e$1.099 \times {10^{ - 11} }{T_{\rm{e} } ^{0.31}}$/(cm3·s–1)
    ${\rm{He}}_2^* $ + e →${\rm{He}}_2^+ $ + 2e$1.268 \times {10^{ - 12} }{T_{\rm{e} } ^{0.71}}\exp \left( { - \dfrac{ {3.945 \times { {10}^4} } }{ { {T_{\rm{e} } } } } } \right)$/(cm3·s–1)
    He* + He* → He+ + He + e$2.7 \times {10^{ - 10}}$/(cm3·s–1)
    下载: 导出CSV
  • [1]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [2]

    Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D: Appl. Phys. 42 055207Google Scholar

    [3]

    Zhu P, Meng Z Z, Hu H X, Ouyang J T 2017 Phys. Plasmas 24 103512Google Scholar

    [4]

    Algwari Q T, O’Connell D 2011 Appl. Phys. Lett. 99 121501Google Scholar

    [5]

    O’Neill F T, Twomey B, Law V J, Milosavljevic V, Kong M G, Anghel S D, Dowling D P 2012 IEEE Trans. Plasma Sci. 40 2994Google Scholar

    [6]

    Liu W, Li Z, Ma C, Zhao L 2017 J. Phys. D: Appl. Phys. 50 415201Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Deng X L, Nikiforov A Y, Vanraes P, Leys C 2013 J. Appl. Phys. 113 023305Google Scholar

    [9]

    Shaw D, West A, Bredin J, Wagenaars E 2016 Plasma Sources Sci. Technol. 25 65018Google Scholar

    [10]

    Nikiforov A Y 2009 IEEE Trans. Plasma Sci. 37 872Google Scholar

    [11]

    Sun J K, Chung T H 2016 Sci. Rep. 6 20332Google Scholar

    [12]

    Wang R X, Zhang C, Shen Y, Zhu W D, Yan P, Shao T, Babaeva N Y, Naidis G V 2015 J. Appl. Phys. 118 123303Google Scholar

    [13]

    Shi J J, Zhong F C, Zhang J 2008 Phys. Plasmas 15 013504Google Scholar

    [14]

    Rong M Z, Xia W J, Wang X H, Liu Z J, Liu D X, Liang Z H, Zhang X N, Kong M G 2017 Appl. Phys. Lett. 111 074104Google Scholar

    [15]

    Liu Z J, Zhou C X, Liu D X, Xu D H, Xia W J, Cui Q J, Wang B C, Kong M G 2018 Phys. Plasmas 25 013528Google Scholar

    [16]

    Breden D, Miki K, Raja L L 2011 Appl. Phys. Lett. 99 111501Google Scholar

    [17]

    Hofmans M, Viegas P, Rooij O V, Klarenaar B, Guaitella O, Bourdon A, Sobota A 2020 Appl. Phys. Express 13 086001Google Scholar

    [18]

    Sun Z T, Yan W, Ji L F, Bi Z H, Song Y, Liu D P 2018 Plasma Sci. Technol. 20 085401Google Scholar

    [19]

    Song S T, Guo Y, Choe W, Zhang J, Zhang J, Shi J J 2012 Phys. Plasmas 19 123508Google Scholar

    [20]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [21]

    Sakiyama Y, Graves D B, Stoffels E 2008 J. Phys. D: Appl. Phys. 41 095204Google Scholar

    [22]

    Karakas E, Akman M A, Laroussi M 2012 Plasma Sources Sci. Technol. 21 034016Google Scholar

    [23]

    Xian Y B, Xu H T, Lu X P, Pei X K, Gong W W, Lu Y, Liu D W, Yang Y 2015 Phys. Plasmas 22 063507Google Scholar

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231946
    [2] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [3] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [4] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断. 物理学报, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [5] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [6] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [7] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [8] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [9] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [10] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [11] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [12] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [13] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [14] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [15] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [16] 毛邦宁, 陈 钢, 王煜博, 陈 立, 潘佰良. 纵向脉冲放电的Ne-CuBr紫外激光参量的数值研究. 物理学报, 2007, 56(5): 2652-2656. doi: 10.7498/aps.56.2652
    [17] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [18] 吴衍青, 肖体乔. 离子振荡对低压脉冲负电性放电条件的影响. 物理学报, 2006, 55(7): 3443-3450. doi: 10.7498/aps.55.3443
    [19] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [20] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟. 物理学报, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
计量
  • 文章访问数:  4962
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-03-01
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回