搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断

税敏 席涛 闫永宏 于明海 储根柏 朱斌 何卫华 赵永强 王少义 范伟 卢峰 杨雷 辛建婷 周维民

引用本文:
Citation:

激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断

税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民

Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis

Shui Min, Xi Tao, Yan Yong-Hong, Yu Ming-Hai, Chu Gen-Bai, Zhu Bin, He Wei-Hua, Zhao Yong-Qiang, Wang Shao-Yi, Fan Wei, Lu Feng, Yang Lei, Xin Jian-Ting, Zhou Wei-Min
PDF
HTML
导出引用
  • 强激光烧蚀低密度有机材料形成等离子体射流碰撞, 可以对材料进行准等熵加载, 比激光冲击加载应变率低, 相同压强下可以获得更高的压缩度和更低的温升, 在状态方程、飞片加速等方面有很强的应用前景. 在星光III置上首次开展了等离子体射流驱动小尺寸铝飞片及姿态诊断联合实验. 通过调控有机材料厚度和真空间隙长度, 获得了厚度20 μm、直径约400 μm的铝飞片, 飞片加速时间长达200 ns. 基于ps拍瓦激光的高能X光背光照相结果显示铝飞片在飞行约400 μm距离后仍然保持了很好的飞行姿态和完整性.
    Laser-driven flyer has been studied for decades as it promises to possess many applications such as in measuring the equation of state (EOS) under ultrahigh pressure, investigating the material dynamic properties under high strain rate, simulating the high-speed impact for aircraft protection, and igniting explosives. However, the planarity and integrity of flyers are determined by indirect velocity lnterferometer system for any reflector (VISAR) or witness slab results due to its high speed and small dimension. For further and wide applications, it is very important to obtain direct experimental proof of the flyer gesture and configuration. Thus, the acceleration and gesture investigation of aluminum flyer driven by laser plasma are studied on Xingguang-III laser facility. The X-ray radiography is achieved by a picosecond laser irradiating the copper wire target. The shadowgraph of flyer and plasma are realized by the incidence of a bunch of infrared laser through the flyer flight path. In additon, photon Doppler velocimetry is employed to measure the flyer velocity simultaneously. The radiography, shadowgraph and velocity of typical small aluminum flyer are obtained. By optimizing the thickness of both CH ablation layer and vacuum gap, the flyer is slowly accelerated via consecutive stress wave produced by plasma colliding. The aluminum flyer has a thickness of 20 μm and diameter of about 500 μm. The whole flyer remains the integrated shape after a great angle of rotation due to uneven plasma loading. The flight distance is about 400 μm, giving an average velocity of 2.2 km/s. The planarity of the flyer is good except a little bend on the two sides due to side rarefaction of plasma. The study verifies that the laser plasma collision can generate a sub-millimeter-diameter metal flyer with integrated shape and a velocity of several kilo-meters per second, showing that it possesses the promising applications in measuring the EOS and igniting explosive .
      通信作者: 税敏, shuimin123@163.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0206001)和等离子体物理重点实验室基金(批准号: 6142A04200105)资助的课题.
      Corresponding author: Shui Min, shuimin123@163.com
    • Funds: Project supported by the the National Key R&D Program of China (Grant No. 2017YFA0206001) and the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant No. 6142A04200105).
    [1]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar

    [2]

    O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar

    [3]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [4]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [5]

    Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256

    [6]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar

    [7]

    Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar

    [8]

    税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar

    Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar

    [9]

    Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar

    [10]

    Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar

    [11]

    Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar

    [12]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar

    [13]

    Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar

    [14]

    谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar

    Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar

    [15]

    周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar

    Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar

    [16]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [17]

    Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar

    [18]

    储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar

    Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar

    [19]

    税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar

    Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar

    [20]

    Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar

    [21]

    单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar

  • 图 1  经过1 mm CPP后的远场光学焦斑空间分布

    Fig. 1.  On-target focal spot of nanosecond beam after 1 mm CPP.

    图 2  远场光学焦斑的一维强度空间分布 (a) 沿着y轴; (b) 沿着x

    Fig. 2.  One-dimensional on-target focal spot of nanosecond beam after 1 mm CPP: (a) Along y axis; (b) along x axis.

    图 3  等离子体射流驱动飞片及姿态诊断原理示意图

    Fig. 3.  Schematic view of plasma-driven flyer and gesture investigation.

    图 4  实验诊断排布示意图(俯视图)

    Fig. 4.  Schematic view of experimental diagnostic configuration (top view).

    图 5  不同能量和真空间隙长度下Multi计算的铝飞片速度曲线

    Fig. 5.  Aluminum flyer velocity obtained by Multi calculation at different laser energy and vacuum gap length.

    图 6  PDV测量的不同激光能量对应的铝飞片自由面速度曲线

    Fig. 6.  Aluminum flyer velocity obtained by PDV measurements at different ns laser energy.

    图 7  背光照相的静态空间分辨 (a) Cu客体背光图像; (b)空间分辨拟合结果

    Fig. 7.  Static spatial resolution: (a) Radiography of copper slab; (b) spatial resolution determined by edge spread function.

    图 8  等离子体射流驱动铝飞片的X光图像(其中照相延时346 ns) (a) 原始图像; (b) 飞片旋转放大后的图像

    Fig. 8.  Radiography of aluminum flyer driven by laser plasma, where time delay is 346 ns: (a) Raw image; (b) magnified flyer image after rotation.

    图 9  等离子体射流驱动的铝飞片X光图像, 其中照相延时350 ns

    Fig. 9.  Radiography of aluminum flyer driven by laser plasma, where time delay is 350 ns.

    图 10  典型的等离子体射流驱动铝飞片阴影图像, 其中相对ns激光延时分别为(a) 120 ns, (b) 180 ns, (c) 240 ns, (d) 300 ns

    Fig. 10.  Typical shadowgraphs of aluminum flyer driven by laser plasma, where the time delay referring to ns laser is (a) 120 ns, (b) 180 ns, (c) 240 ns, (d) 300 ns.

    表 1  实验结果统计

    Table 1.  Experimental parameter above the shocked melting point.

    序号发次号实验内容激光能量ps束照相延时/ns
    120210524123静态照相标定ps: 92 J
    220200902010铝飞片产生及姿态诊断ns: 50 J, ps: 46 J, 346
    320210524125铝飞片产生及姿态诊断ns: 46 J, ps: 93 J, 350
    420210527134铝飞片产生及姿态诊断ns: 47 J, ps: 37 J350
    下载: 导出CSV
  • [1]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar

    [2]

    O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar

    [3]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [4]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [5]

    Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256

    [6]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar

    [7]

    Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar

    [8]

    税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar

    Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar

    [9]

    Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar

    [10]

    Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar

    [11]

    Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar

    [12]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar

    [13]

    Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar

    [14]

    谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar

    Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar

    [15]

    周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar

    Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar

    [16]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [17]

    Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar

    [18]

    储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar

    Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar

    [19]

    税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar

    Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar

    [20]

    Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar

    [21]

    单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231946
    [2] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [3] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [4] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [5] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [7] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [8] 税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋. 神光III原型装置激光驱动高速飞片实验研究进展. 物理学报, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703
    [9] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [10] 张志宇, 赵阳, 薛全喜, 王峰, 杨家敏. 激光驱动准等熵压缩透明窗口LiF的透明性. 物理学报, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [11] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究. 物理学报, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [12] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展. 物理学报, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [13] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [14] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋. 激光驱动气库靶对铝的准等熵压缩实验研究. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [15] 赵兴海, 赵翔, 高杨, 席仕伟, 苏伟. 光纤传输激光驱动飞片实验研究. 物理学报, 2011, 60(11): 118204. doi: 10.7498/aps.60.118204
    [16] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断. 物理学报, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [17] 黄海军, 沈 强, 罗国强, 张联盟. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析. 物理学报, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [18] 沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦. 为实现准等熵压缩的波阻抗梯度飞片的实验研究. 物理学报, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [19] 马国彬, 谭维翰. 短脉冲驱动下膨胀冷却等离子体中软X射线激光研究. 物理学报, 1994, 43(6): 942-949. doi: 10.7498/aps.43.942
    [20] 马锦秀, 徐至展. 双束“自陷”激光驱动的电子等离子体波的拍频激发. 物理学报, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
计量
  • 文章访问数:  2737
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-15
  • 上网日期:  2022-02-08
  • 刊出日期:  2022-05-05

/

返回文章
返回