搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压氩气刷形等离子体羽的特性研究

杨丽君 宋彩虹 赵娜 周帅 武珈存 贾鹏英

引用本文:
Citation:

大气压氩气刷形等离子体羽的特性研究

杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英

Discharge characteristics of argon brush plasma plume operated at atmospheric pressure

Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying
PDF
HTML
导出引用
  • 大气压非平衡低温等离子体在生物医学和表面处理等方面具有广泛的应用前景, 引起研究者的关注. 等离子体射流是产生大气压非平衡等离子体的重要方式, 但通常产生的等离子体羽尺度较小. 针对于此, 本文采用一个具有三电极的介质阻挡放电装置, 在交流电压与负偏置电压的共同作用下, 在流动氩气的下游产生了大尺度刷状等离子体羽(50.0 mm × 40.0 mm). 结果表明, 随着交流电压峰值的增加, 等离子体羽的亮度增大. 通过快速影像, 研究发现视觉均匀的等离子体羽是由分叉流光的时间叠加构成的. 电压和发光信号波形表明交流电压的每个周期放电一次, 且放电出现于外加电压的正半周期. 随着交流电压峰值的增加, 分叉流光的分叉数量增多, 导致放电脉冲的持续时间增加且脉冲强度增强. 利用光谱仪测量了300—850 nm的发射光谱, 发现谱线包括308.0 nm处的OH (A2Σ+ —X2Π), N2 (C3Πu —B3Πg)的第二正带系, Ar I (4p—4s)以及844.6 nm处的O I (3p3 P—3s3 S). 基于发射光谱, 研究了分子振动温度及谱线强度比随实验参数的变化关系. 结果表明, 电子温度、分子振动温度和电子密度具有相似的变化趋势. 利用光化线强度比的方法, 研究了等离子体羽中氧原子浓度随实验参数的变化. 结果表明氧原子浓度沿气流方向先增加后降低, 随工作气体中氧气含量的增加先增加后降低. 此外, 氧原子浓度随交流电压峰值的增大而增加, 并对氧原子浓度的变化进行了定性的解释.
    Atmospheric pressure non-equilibrium low-temperature plasma has been widely used in biomedicine, surface treatment and other fields, which has attracted the attention of researchers extensively. As one of the important methods to generate such a plasma, the plasma jet has become a popular method, which can generate a remote plasma plume at the nozzle through introducing a rare gas flow. However, plasma plume has a small diameter, which results in deficiency for the large-scale surface treatment. A dielectric barrier discharge device with three electrodes is utilized to produce a large brush-shaped plasma plume (50.0 mm × 40.0 mm) downstream of flowing argon under the combined excitation of an alternate current (AC) voltage and a negative bias voltage, thereby increasing the plume scale. The results show that the luminescence intensity of the plasma plume increases with AC peak voltage increasing. By fast photography implemented with an intensified charge coupled device (ICCD), it is found that the plasma plume is composed of temporally superposed branched-streamers. The ICCD images also reveal that the number of branches increases with AC peak voltage increasing. Moreover, the waveforms of AC voltage and light emission signal recorded simultaneously indicate that the plasma plume initiates once per AC voltage cycle, which occurs in the positive half cycle of the applied voltage. With AC peak voltage increasing, the duration and intensity of discharge pulse increase, which results from more branches of the branched streamer. Besides, optical emission spectrum in a range from 300 nm to 850 nm mainly includes OH (A2Σ+–X2Π) peaked at 308.0 nm, the second positive system of N2 (C3Πu–B3Πg), Ar I (4p–4s), and O I (3p3 P–3s3 S) at 844.6 nm. Based on the optical emission spectrum, the plasma parameters such as vibrational temperature and intensity ratio of spectral lines (correlated with electron density and electron temperature) are investigated. Besides, the variation of concentration of oxygen atoms in the plasma plume with experimental parameters is investigated by optical actinometry. The results indicate that the concentration of oxygen atoms first increases and then decreases with the distance increasing along the argon flow direction or with oxygen content of the working gas increasing. In addition, the concentration of oxygen atoms increases with AC peak voltage increasing. All these results are discussed qualitatively. These results are of great importance in modifying the plasma surface on a large scale.
      通信作者: 贾鹏英, plasmalab@126.com
    • 基金项目: 国家自然科学基金(批准号: 11875121, 11575050, 51977057)、河北省自然科学基金(批准号: A2019201100, A2020201025)和河北省研究生创新基金(批准号: CXZZSS2020006)资助的课题
      Corresponding author: Jia Peng-Ying, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875121, 11575050, 51977057), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019201100, A2020201025), and the Postgraduate Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2020006)
    [1]

    Liao X Y, Li J, Muhammad A I, et al. 2018 Food Control 90 241Google Scholar

    [2]

    Keidar M, Shashurin A, Volotskova O, Stepp M A, Srinivasan P, Sandler A, Trink B 2013 Phys. Plasmas 20 057101Google Scholar

    [3]

    Athanasopoulus D, Svarnas P, Ladas S, Kennou S, Koutsoukos P 2018 Appl. Phys. Lett. 112 213703Google Scholar

    [4]

    Daeschlein G, Woedtke T V, Kindel E, et al. 2010 Plasma Processes Polym. 7 224Google Scholar

    [5]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [6]

    Jung H, Kim W H, Oh I K, et al. 2016 J. Mater. Sci. 51 5082Google Scholar

    [7]

    Ning W J, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [8]

    Li X, Yang D Z, Yuan H, Zhao Z L, Zhou X F, Zhang L, Wang W C 2019 High Volt. 4 228Google Scholar

    [9]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [10]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C 2007 Appl. Phys. Lett. 91 221504Google Scholar

    [11]

    Wang X X, Li C R, Lu M Z, Pu Y K 2003 Plasma Sources Sci. Technol. 12 358Google Scholar

    [12]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203Google Scholar

    [13]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [14]

    Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Sands B L, Ganguly B N, Tachibana K 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [17]

    Zhu W D, Lopez J L 2012 Plasma Sources Sci. Technol. 21 034018Google Scholar

    [18]

    Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 111501Google Scholar

    [19]

    Ghasemi M, Olszewski P, Bradley J W, Walsh J L 2013 J. Phys. D: Appl. Phys. 46 052001Google Scholar

    [20]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [21]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 031501Google Scholar

    [22]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 582Google Scholar

    [23]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [24]

    Liu X, Wang C C, Liu J Y, Wang C S, Yang Z K, Chen F Z, Song J L 2019 J. Appl. Phys. 125 123301Google Scholar

    [25]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [26]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [27]

    Li X C, Lin X T, Wu K Y, Ren C H, Liu R, Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006Google Scholar

    [28]

    Jiang N, Ji A L, Cao Z X 2009 J. Appl. Phys. 106 013308Google Scholar

    [29]

    Kovach Y E, Garcia M C, Foster J E 2019 IEEE Trans. Plasma Sci. 47 3214Google Scholar

    [30]

    李寿哲 2019 低温等离子体光谱理论基础及应用 (第1版) (大连: 大连理工大学出版社) 第185页

    Li S Z 2019 Fundamentals of Low-temperature Plasma Spectroscopy and its Application (1st Ed.) (Dalian: Dalian University of Technology Press) p185 (in Chinese)

    [31]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [32]

    Zhang B, Zhu Y, Liu F, Fang Z 2017 Plasma Sci. Technol. 19 064011Google Scholar

    [33]

    Teodorescu M, Bazavan M, Ionita E R, Dinescu G 2015 Plasma Sources Sci. Technol. 24 025033Google Scholar

    [34]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

    [35]

    Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y, Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015Google Scholar

    [36]

    Xiao D Z, Cheng C, Shen J, Lan Y, Xie H B, Shu X S, Meng Y D, Li J G 2014 Phys. Plasmas 21 053510Google Scholar

    [37]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p550

    [38]

    Shao X J, Chang Z S, Mu H B, Liao W L, Zhang G J 2013 IEEE Trans. Plasma Sci. 41 899Google Scholar

    [39]

    Lowke J J 1992 J. Phys. D: Appl. Phys. 25 202Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  不同交流电压峰值及曝光时间下的等离子体羽照片

    Fig. 2.  Images of the plasma plume with different peak voltage and exposure time.

    图 3  外加电压、放电电流和刷形等离子体羽发光信号的波形 (a) 交流电压的幅值为8.0 kV; (b) 交流电压的幅值为10.5 kV

    Fig. 3.  Waveforms of applied voltage, discharge current and integrated emission from the brush-shaped plasma plume: (a) The amplitude of alternating current of 8.0 kV; (b) the amplitude of alternating current of 10.5 kV.

    图 4  不同Vp下的ICCD照片 (曝光时间为13.0 μs) (a)−(c) 8.0 kV; (d)−(f) 10.5 kV

    Fig. 4.  ICCD images with an exposure time of 13.0 μs for the plume at different Vp: (a)−(c) 8.0 kV; (d)−(f) 10.5 kV.

    图 5  等离子体羽在300−850 nm的总发射光谱 (Vp = 8.0 kV)

    Fig. 5.  300−850 nm scanned spectrum emitted from the plasma plume (Vp = 8.0 kV).

    图 6  谱线强度比和分子振动温度沿空间位置(a)、随氧气含量 (b) 和电压峰值 (c) 的变化

    Fig. 6.  Intensity ratio of spectral lines and vibration temperature as a function of Y coordinate (a), oxygen concentration (b) and peak voltage (c).

    图 7  844.6 nm与750.4 nm谱线的强度比沿Y轴(a)及随氧气含量(b)和电压峰值(c) 的变化规律

    Fig. 7.  Intensity ratio of spectral lines (844.6 nm to 750.4 nm) as a function of Y coordinate (a), oxygen concentration (b) and peak voltage (c).

  • [1]

    Liao X Y, Li J, Muhammad A I, et al. 2018 Food Control 90 241Google Scholar

    [2]

    Keidar M, Shashurin A, Volotskova O, Stepp M A, Srinivasan P, Sandler A, Trink B 2013 Phys. Plasmas 20 057101Google Scholar

    [3]

    Athanasopoulus D, Svarnas P, Ladas S, Kennou S, Koutsoukos P 2018 Appl. Phys. Lett. 112 213703Google Scholar

    [4]

    Daeschlein G, Woedtke T V, Kindel E, et al. 2010 Plasma Processes Polym. 7 224Google Scholar

    [5]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [6]

    Jung H, Kim W H, Oh I K, et al. 2016 J. Mater. Sci. 51 5082Google Scholar

    [7]

    Ning W J, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [8]

    Li X, Yang D Z, Yuan H, Zhao Z L, Zhou X F, Zhang L, Wang W C 2019 High Volt. 4 228Google Scholar

    [9]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577Google Scholar

    [10]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C 2007 Appl. Phys. Lett. 91 221504Google Scholar

    [11]

    Wang X X, Li C R, Lu M Z, Pu Y K 2003 Plasma Sources Sci. Technol. 12 358Google Scholar

    [12]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203Google Scholar

    [13]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [14]

    Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Sands B L, Ganguly B N, Tachibana K 2008 Appl. Phys. Lett. 92 151503Google Scholar

    [17]

    Zhu W D, Lopez J L 2012 Plasma Sources Sci. Technol. 21 034018Google Scholar

    [18]

    Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 111501Google Scholar

    [19]

    Ghasemi M, Olszewski P, Bradley J W, Walsh J L 2013 J. Phys. D: Appl. Phys. 46 052001Google Scholar

    [20]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [21]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 031501Google Scholar

    [22]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 582Google Scholar

    [23]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [24]

    Liu X, Wang C C, Liu J Y, Wang C S, Yang Z K, Chen F Z, Song J L 2019 J. Appl. Phys. 125 123301Google Scholar

    [25]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [26]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [27]

    Li X C, Lin X T, Wu K Y, Ren C H, Liu R, Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006Google Scholar

    [28]

    Jiang N, Ji A L, Cao Z X 2009 J. Appl. Phys. 106 013308Google Scholar

    [29]

    Kovach Y E, Garcia M C, Foster J E 2019 IEEE Trans. Plasma Sci. 47 3214Google Scholar

    [30]

    李寿哲 2019 低温等离子体光谱理论基础及应用 (第1版) (大连: 大连理工大学出版社) 第185页

    Li S Z 2019 Fundamentals of Low-temperature Plasma Spectroscopy and its Application (1st Ed.) (Dalian: Dalian University of Technology Press) p185 (in Chinese)

    [31]

    Thiyagarajan M, Sarani A, Nicula C 2013 J. Appl. Phys. 113 233302Google Scholar

    [32]

    Zhang B, Zhu Y, Liu F, Fang Z 2017 Plasma Sci. Technol. 19 064011Google Scholar

    [33]

    Teodorescu M, Bazavan M, Ionita E R, Dinescu G 2015 Plasma Sources Sci. Technol. 24 025033Google Scholar

    [34]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

    [35]

    Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y, Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015Google Scholar

    [36]

    Xiao D Z, Cheng C, Shen J, Lan Y, Xie H B, Shu X S, Meng Y D, Li J G 2014 Phys. Plasmas 21 053510Google Scholar

    [37]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p550

    [38]

    Shao X J, Chang Z S, Mu H B, Liao W L, Zhang G J 2013 IEEE Trans. Plasma Sci. 41 899Google Scholar

    [39]

    Lowke J J 1992 J. Phys. D: Appl. Phys. 25 202Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [3] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [4] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断. 物理学报, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [5] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [6] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [7] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞. 物理学报, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [11] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究. 物理学报, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [12] 王琪, 樊群超, 孙卫国, 冯灏. 精确研究NbN分子d1+b1+电子态跃迁的P线系发射光谱. 物理学报, 2012, 61(4): 043301. doi: 10.7498/aps.61.043301
    [13] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [15] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [16] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [17] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [18] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
计量
  • 文章访问数:  5103
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 修回日期:  2021-03-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回