-
以地面发射的高功率电磁波与电离层等离子体之间的相互作用为研究对象,基于等离子体流体模型和Zakharov方法,建立了用于描述地面泵波作用下电离层等离子体中波-波、波-粒相互作用的物理数学模型,开展了电离层主动加热的数值模拟研究。计算结果表明:当地面发射的泵波在电离层等离子体中传播时,反射高度处电磁波能量的沉积会产生较强的局部电场,从而激发参量不稳定性过程;当满足频率和波矢的匹配关系时,会激发泵波、Langmuir波和离子声波三波相互作用的参量衰减不稳定性,以及泵波、上混杂波和下混杂波三波相互作用的参量不稳定性;在本文所研究的泵波频率和功率范围内,泵波频率的降低会导致寻常波的反射高度降低,且电子温度的扰动比例随着频率的降低而升高,而泵波功率的增大会则导致等离子体从泵波中吸收的能量增加、电子温度升高。本文数值模拟结果揭示了不同泵波参数对电离层等离子体特性时空演化的影响规律以及波-粒能量输运过程,阐释了实验观察到的参量不稳定性和受激电磁辐射等的产生机制。In low-pressure plasmas, the collisions between particles are weak and insufficient damping from collisions leads to the gradual emergence of various waves and instabilities. Thus, the effects of wave-particle interaction become non-negligible in the non-equilibrium transport processes in plasmas under low pressure conditions. For instance, the heating of ionospheric plasma by high-frequency electromagnetic waves plays a significant role in enabling over-the-horizon communication. During the wave propagation through the ionosphere, the electromagnetic radiation alters the local electron temperature and density, and simultaneously, excites various wave modes and instabilities. This study focuses on the interactions between high-power electromagnetic waves emitted from the ground and ionospheric plasmas. Based on the plasma fluid model and Zakharov method, a physical-mathematical model is established to describe the wave-wave and wave-particle interactions in the ionospheric plasmas under the excitation of the pump waves. The modeling results on the active heating of ionosphere show that, when the ground-emitted waves propagate in the ionospheric plasmas, the energy deposition of the electromagnetic waves at the reflection height will excite a strong localized electric field, and consequently, trigger the parametric instabilities. When the frequency and wave vector matching conditions are satisfied, two distinct three-wave interactions will be excited, i.e., the parametric decay instability involving the pump wave, Langmuir wave and ion acoustic wave, and the parametric instability process related to the pump wave, upper hybrid and lower hybrid waves. Within certain ranges of pump frequency and power studied in this paper, the decrease of the pump frequency will lead to the decrease of the reflection height of the ordinary waves, and simultaneously, the increase of the perturbation ratios of the electron temperature; while the higher pump wave power will enhance the energy absorption of the ionospheric plasmas from the pump wave, and thereby elevating the electron temperature. The modeling results not only reveal the spatiotemporal evolutions of the ionospheric plasma characteristics under various pump parameters and the energy transport processes between waves and particles, but also provide theoretical explanations on the parametric instability, stimulated electromagnetic emission and other phenomena observed in experiments.
-
Keywords:
- Artificial heating of ionosphere /
- non-equilibrium transport /
- parametric instability /
- numerical simulation
-
[1] Stubbe P, Hagfor T 1997 Surv. Geophys. 18 57
[2] Zhan L 2007 M.S. Thesis (Beijing: Graduate School of Chinese Academy of Science) (in Chinese) [占亮 2007 硕士学位论文 (北京: 中国科学院研究生院)]
[3] Huang W G, Gu S F, Gong J C 2004 Chin. J. Radio 19 296 (in Chinese) [黄文耿, 古士芬, 龚建村 2004 电波科学学报 19 296]
[4] Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401
[5] Gondarenko N A, Ossakow S L, Milikh G M 2005 J. Geophys. Res-Space Phys. 110 A09304
[6] Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770-772 1
[7] Streltsov A V, Berthelier J J, Chernyshov A A, Frolov V L, Honary F, Kosch M J, McCoy R P, Mishin E V, Rietveld M T 2018 Space Sci. Rev. 214 1
[8] Huang W G 2003 Ph.D. Dissertation (Beijing: Graduate School of Chinese Academy of Science) (in Chinese) [黄文耿 2003 博士学位论文 (北京: 中国科学院研究生院)]
[9] Li J T 2012 Ph.D. Dissertation (Xi’an: Xidian University) (in Chinese) [李江挺 2012 博士学位论文 (西安: 西安电子科技大学)]
[10] Gurevich A V, Lukyanov A V, Zybin K P 1996 Phys. Lett. A 211 363
[11] Gurevich A V, Milikh G M 1997 J. Geophys. Res-Space Phys. 102 389
[12] Stubbe P 1996 J. Geophys. Res-Space Phys. 58 349
[13] Bernhardt P A, Wong M, Huba J D, Fejer B G, Wagner L S, Goldstein J A, Selcher C A, Frolov V L, Sergeev E N 2000 J. Geophys. Res-Space Phys. 105 10657
[14] Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp3-15 (in Chinese) [王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第3-15页]
[15] Ma T C, Hu X W, Chen Y H 2012 Principles of Plasma Physics (Revised Edition) (Hefei: University of Science and Technology of China Press) pp16-34 (in Chinese) [马腾才, 胡希伟, 陈银华 2012 等离子体物理原理(修订版) (合肥: 中国科学技术大学出版社) 第16-34页]
[16] Wang S C, Fang H X, Yang S G, Weng L B 2012 Chin. J. Space Sci. 32 818 (in Chinese) [汪四成, 方涵先, 杨升高, 翁利斌 2012 空间科学学报 32 818]
[17] Wong A Y 1977 Laser Interact. Relat. Plasma Phenom. 4B 783
[18] Zakharov V E 1972 Sov. Phys. JETP 35 908
[19] DuBois D F, Rose H A, Russell D 1990 J. Geophys. Res-Space Phys. 95 21221
[20] Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M, McCrea I, Bamford R, Mendonca J T, Bingham R 2021 Nat. Commun. 12 6209
[21] Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101 (in Chinese) [杨利霞, 刘超, 李清亮, 闫玉波 2022 物理学报 71 064101]
[22] Bernhardt P A, Duncan L M 1982 J. Atmos. Terr. Phys. 44 1061
[23] Gurevich A, Hagfors T, Carlson H, Karashtin A, Zybin K 1998 Phys. Lett. A 239 385
[24] Wang C, Zhou Cm Zhao Z Y, Zhang Y N, Yang X B 2015 Chin. J. Geophys. 58 1853 (in Chinese) [王琛, 周晨, 赵正予, 张援农, 杨许铂 2015 地球物理学报 58 1853]
[25] Gurevich A V (translated by Liu X M, Zhang X J) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp245-249 (in Chinese) [古列维奇A V著 (刘选谋, 张训械译) 1986 电离层中的非线性现象 (北京: 科学出版社) 第245-249页]
[26] Dysthe K B, Mjølhus E, Pécseli H L, Rypdal K 1983 Phys. Fluids 26 146
[27] Banks P M, Kockarts G 1973 Aeronomy (New York: Academic Press)
[28] Wang C 2016 Ph.D. Dissertation (Wuhan: Wuhan University) (in Chinese) [王琛 2016 博士学位论文 (武汉: 武汉大学)]
[29] Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 181 (in Chinese) [黄文耿, 古士芬 2003 空间科学学报 23 181]
[30] Stubbe P, Varnum W S 1972 Planet Space Sci. 20 1121
[31] Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 343 (in Chinese) [黄文耿, 古士芬 2003 空间科学学报 23 343]
[32] Mahmoudian A, Nossa E, Isham B, Bernhardt P A, Briczinski S J, Sulzer M 2019 J. Geophys. Res-Space Phys. 124 3699
[33] Frolov V L, Sergeev E N, Ermakova E N, Komrakov G P 2001 Geophys. Res. Lett. 28 3103
[34] Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X 2017 Space weather 15 418
[35] Hedin A E 1991 J. Geophys. Res-Space Phys. 96 1159
[36] Alken P, Thébault E, Beggan C D, Amit H, Aubert J, Baerenzung J, Bondar T N, Brown W J, Califf S, Chambodut A, Chulliat A, Cox G A, Finlay C C, Fournier A, Gillet N, Grayver A, Hammer M D, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger J M, Lesur V, Livermore P W, Lowes F J, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman M C, Minami T, Morschhauser A, Mound J E, Nair M, Nakano S, Olsen N, Pavón-Carrasco F J, Petrov V G, Ropp G, Rother M, Sabaka T J, Sanchez S, Saturnino D, Schnepf N R, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta J M, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B 2021 Earth, Planets Space 73 1
[37] Mur G 1981 IEEE Transactions on Electromagnetic Compatibility 23 377
[38] Eliasson B, Thidé B 2007 Geophys. Res. Lett. 34 L06106
[39] Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp79-81 (in Chinese) [王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第79-81页]
[40] Zhou C, Wang X, Liu M R, Ni B B, Zhao Z Y 2018 Chin. J. Geophys. 61 4323 (in Chinese) [周晨, 王翔, 刘默然, 倪彬彬, 赵正予 2018 地球物理学报 61 4323]
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0