搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泵波作用下电离层等离子体中波-波、波-粒相互作用过程的数值模拟

张梦龙 方川 张子明 李和平

引用本文:
Citation:

泵波作用下电离层等离子体中波-波、波-粒相互作用过程的数值模拟

张梦龙, 方川, 张子明, 李和平

Modeling of wave-wave and wave-particle interactions in ionospheric plasma under pump wave action

ZHANG Menglong, FANG Chuan, ZHANG Ziming, LI Heping
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以地面发射的高功率电磁波与电离层等离子体之间的相互作用为研究对象, 基于等离子体流体模型和Zakharov方法, 建立了用于描述地面泵波作用下电离层等离子体中波–波、波–粒相互作用的物理数学模型, 开展了电离层主动加热的数值模拟研究. 计算结果表明: 当地面发射的泵波在电离层等离子体中传播时, 反射高度处电磁波能量的沉积会产生较强的局部电场, 从而激发参量不稳定性过程; 当满足频率和波矢的匹配关系时, 会激发泵波、Langmuir波和离子声波三波相互作用的参量衰减不稳定性, 以及泵波、上混杂波和下混杂波三波相互作用的参量不稳定性; 在本文所研究的泵波频率和功率范围内, 泵波频率的降低会导致寻常波的反射高度降低, 且电子温度的扰动比例随着频率的降低而升高, 而泵波功率的增大则会导致等离子体从泵波中吸收的能量增大、电子温度升高. 本文数值模拟结果揭示了不同泵波参数对电离层等离子体特性时空演化的影响规律以及波–粒能量输运过程, 阐释了实验观察到的参量不稳定性和受激电磁辐射等的产生机制.
    In low-pressure plasmas, the collisions between particles are weak and insufficient damping from collisions, leading to the gradual development of various waves and instabilities. Thus, the effects of wave-particle interaction are non-negligible in the non-equilibrium transport processes in plasma under low pressure conditions. For example, the heating of ionospheric plasma by high-frequency electromagnetic waves plays an important role in achieving over-the-horizon communication. During the wave propagation through the ionosphere, the electromagnetic radiation changes the local electron temperature and density, and simultaneously, excites various wave modes and instabilities. This study focuses on the interactions between high-power electromagnetic waves emitted from the ground and ionospheric plasma. Based on the plasma fluid model and Zakharov method, a physical-mathematical model is established to describe the wave-wave and wave-particle interactions in the ionospheric plasmas under the excitation of the pump waves. The modeling results of the active heating of ionosphere show that when the ground-emitted waves propagate in the ionospheric plasma, the energy deposition of the electromagnetic waves at the reflection height will excite a strong localized electric field, leading to the parametric instabilities. When the frequency and wave vector matching conditions are satisfied, two different three-wave interactions will be excited, i.e. the parametric decay instability involving the pump wave, Langmuir wave and ion acoustic wave, as well as the parametric instability related to the pump wave, upper hybrid and lower hybrid waves. Within a certain range of pump frequency and power studied in this study, the decrease of the pump frequency will lead to the decrease of the reflection height of the ordinary waves, and simultaneously, the perturbation ratios of the electron temperature will also increase; A higher pump wave power will enhance the energy absorption of the ionospheric plasma by the pump wave, thereby increasing the electron temperature. The modeling results not only reveal the spatiotemporal evolutions of the ionospheric plasma characteristics under various pump parameters and the energy transport processes between waves and particles, but also theoretically explain the parametric instability, stimulated electromagnetic emission and other phenomena observed in experiments.
  • 图 1  电离层主动加热过程示意图

    Fig. 1.  Schematic of typical processes in active heating of ionosphere.

    图 2  t = 2 s时电子数密度(a)和电子温度(b)空间分布模拟结果及与文献[31]中相应结果的对比

    Fig. 2.  Simulation results of the spatial distributions of (a) electron number density and (b) temperature at t = 2 s, and comparisons with the corresponding results in Ref. [31].

    图 3  受激布里渊散射谱线频移和电子温度的计算结果与实验结果[32]的对比

    Fig. 3.  Comparisons of the calculated and measured[32] results for the spectral line shift and electron temperature during the stimulated Brillouin scattering process.

    图 4  受激电磁辐射频谱特征的模拟结果与文献[20]中的计算和实验结果的对比

    Fig. 4.  Comparison of the calculated spectrum characteristics of the stimulated electromagnetic radiation with those presented in Ref. [20].

    图 5  计算域示意图

    Fig. 5.  Schematic diagram of the calculational domain.

    图 6  等离子体参量不稳定性演化过程 (a) h = 212 km高度处x, y, z方向电场强度的时间演化; (b) t = 6.25—8.00 ms时间内y方向电场慢变振幅实部εy, r时空演化过程二维等值线图; (c) t = 9.25—10.45 ms时间内y方向电场强度二维Fourier变换图

    Fig. 6.  Evolutions of plasma parametric instabilities: (a) Temporal evolutions of the electric field intensity in the x, y and z directions at a height of h = 212 km; (b) two-dimensional contour of the spatiotemporal evolution of the real part of the slow-varying amplitude of the electric field in the y direction (εy, r) during t = 6.25—8.00 ms; (c) two-dimensional Fourier transform of the electric field intensity in the y direction during t = 9.25—10.45 ms.

    图 7  反射高度附近y方向电场强度分量及空间Fourier变换结果

    Fig. 7.  Electric field intensity in the y direction near the reflection height and its spatial Fourier transform.

    图 8  电场复振幅模在各个方向上分量的时空分布 (a) x方向分量|εx|; (b) y方向分量|εy|; (c) z方向分量|εz|

    Fig. 8.  Spatiotemporal distributions of the complex amplitude modulus of the electric field: (a) component in x-direction |εx|; (b) component in y-direction |εy|; (c) component in z-direction |εz|.

    图 9  受激电磁辐射频谱特征模拟结果与实验结果的对比[33]

    Fig. 9.  Comparison of the calculated spectrum characteristics of the stimulated electromagnetic emission with the experimental results [33].

    图 10  不同泵波频率下电场复振幅模在各个方向上分量的时空分布 (a) x方向分量|εx|; (b) y方向分量|εy|; (c) z方向分量|εz|

    Fig. 10.  Spatiotemporal distributions of the complex amplitude modulus of the electric field: (a) Component in x-direction |εx|; (b) component in y-direction |εy|; (c) component in z-direction |εz|.

    图 11  不同泵波频率下电子温度的空间分布

    Fig. 11.  Spatial distributions of the electron temperature under different pump frequencies.

    图 12  不同泵波功率下的电子温度空间分布

    Fig. 12.  Spatial distributions of the electron temperature under different pump powers.

    表 1  平均动量传输碰撞截面$ {\bar Q_{\text{D}}} $[27]

    Table 1.  Mean momentum transfer collision cross section $ {\bar Q_{\text{D}}} $[27].

    粒子种类碰撞截面/cm2
    N2[(2.82—3.41)×10–4Te] × Te1/2×10–17
    O22.2×10–16 × (1+3.6×10–2Te1/2)
    O1×10–15
    H[(54.7—7.45)×10–3Te] × 10–16
    He5.6×10–16
    下载: 导出CSV

    表 2  电子与中性粒子碰撞频率νen[27]

    Table 2.  Electron-neutral species collision frequency νen[27]

    粒子种类碰撞频率/Hz
    N22.33×10–11n(N2) [(1—1.2)×10–4Te] Te
    O21.8×10–10n(O2) [1+3.6×10–2Te1/2] Te1/2
    O8.2×10–10n(O)Te1/2
    H4.5×10–9n(H) [(1—1.35)×10–4Te] Te1/2
    He4.6×10–10n(He)Te1/2
    下载: 导出CSV

    表 3  电磁波对电离层等离子体加热背景参数[31]

    Table 3.  Parameters for modeling of electromagnetic waves heating ionospheric plasmas[31].

    参数名称 参数值
    热层中性风速度vn/(m·s–1) 100
    模拟区域高度范围/km 150—400
    地磁场倾角θ/(°) 30.0
    地磁场磁感应强度Bg/T 4.6×10–5
    泵波频率f0/MHz 6.0
    发射机有效辐射功率WERP/MW 200
    下载: 导出CSV

    表 4  阿雷西博天文台受激布里渊散射实验参数[32]

    Table 4.  Parameters of stimulated Brillouin scattering experiment at Arecibo Observatory[32].

    参数名称 参数值
    实验地点纬度 18°20'39"N
    实验地点经度 66°45'10"W
    地磁场磁感应强度Bg/T 4.6×10–5
    泵波频率f0/MHz 5.125
    发射机有效辐射功率WERP/MW 80
    电离层F2层临界频率/MHz ~5.0
    泵波反射高度/km ~325
    下载: 导出CSV

    表 5  挪威EISCAT电离层及电磁场参数[20]

    Table 5.  Parameters of ionosphere and electromagnetic field at EISCAT in Norway[20].

    参数名称 参数值
    O波频率f0/MHz 6.3
    发射机有效辐射功率WERP/MW 554.1
    探测波频率fprobe/Hz 10
    电场强度E/(V·m–1) 0.2
    地磁场磁感应强度Bg/μT 48.59
    地磁场倾角θ/(°) 78.2
    离子温度Ti/K 1000
    下载: 导出CSV

    表 6  俄罗斯Sura装置电离层加热实验典型参数[33]

    Table 6.  Typical parameters of ionospheric heating experiment at the Sura facility in Russia[33].

    参数名称 参数值
    泵波频率/MHz 4.3—9.5
    实验时间范围/a 1996—2000
    实验地点纬度 56.13°N
    实验地点经度 46.10°E
    有效辐射功率WERP/MW 30—60
    下载: 导出CSV

    表 7  电离层背景粒子及地磁场参数

    Table 7.  Parameters of ionospheric background particles and geomagnetic field.

    参数名称 参数值
    电子温度/K 1535.3—1832.4
    电子数密度/m–3 3.72×1011—4.93×1011
    地磁场倾角/° 72.1
    地磁场磁感应强度/T 4.6×10–5
    等离子体频率/MHz 5.47—6.30
    上混杂频率/MHz 5.63—6.44
    下混杂频率/kHz 7.88
    下载: 导出CSV
  • [1]

    Stubbe P, Hagfor T 1997 Surv. Geophys. 18 57Google Scholar

    [2]

    占亮 2007 硕士学位论文 (北京: 中国科学院研究生院)

    Zhan L 2007 M. S. Thesis (Beijing: Graduate School of Chinese Academy of Science

    [3]

    黄文耿, 古士芬, 龚建村 2004 电波科学学报 19 296

    Huang W G, Gu S F, Gong J C 2004 Chin. J. Radio 19 296

    [4]

    Chang S S, Ni B B, Zhao Z Y , Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [5]

    Gondarenko N A, Ossakow S L, Milikh G M 2005 J. Geophys. Res-Space Phys. 110 A09304

    [6]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770-772 1

    [7]

    Streltsov A V, Berthelier J J, Chernyshov A A, Frolov V L, Honary F, Kosch M J, McCoy R P, Mishin E V, Rietveld M T 2018 Space Sci. Rev. 214 1Google Scholar

    [8]

    黄文耿 2003 博士学位论文 (北京: 中国科学院研究生院)

    Huang W G 2003 Ph. D. Dissertation (Beijing: Graduate School of Chinese Academy of Science

    [9]

    李江挺 2012 博士学位论文 (西安: 西安电子科技大学)

    Li J T 2012 Ph. D. Dissertation (Xi’an: Xidian University

    [10]

    Gurevich A V, Lukyanov A V, Zybin K P 1996 Phys. Lett. A 211 363Google Scholar

    [11]

    Gurevich A V, Milikh G M 1997 J. Geophys. Res-Space Phys. 102 389Google Scholar

    [12]

    Stubbe P 1996 J. Geophys. Res-Space Phys. 58 349

    [13]

    Bernhardt P A, Wong M, Huba J D, Fejer B G, Wagner L S, Goldstein J A, Selcher C A, Frolov V L, Sergeev E N 2000 J. Geophys. Res-Space Phys. 105 10657Google Scholar

    [14]

    王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第3—15页

    Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp3–15

    [15]

    马腾才, 胡希伟, 陈银华 2012 等离子体物理原理(修订版) (合肥: 中国科学技术大学出版社) 第16—34页

    Ma T C, Hu X W, Chen Y H 2012 Principles of Plasma Physics (Revised Edition) (Hefei: University of Science and Technology of China Press) pp16–34

    [16]

    汪四成, 方涵先, 杨升高, 翁利斌 2012 空间科学学报 32 818Google Scholar

    Wang S C, Fang H X, Yang S G, Weng L B 2012 Chin. J. Space Sci. 32 818Google Scholar

    [17]

    Wong A Y 1977 Laser Interact. Relat. Plasma Phenom. 4B 783

    [18]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [19]

    DuBois D F, Rose H A, Russell D 1990 J. Geophys. Res-Space Phys. 95 21221Google Scholar

    [20]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M, McCrea I, Bamford R, Mendonca J T, Bingham R 2021 Nat. Commun. 12 6209Google Scholar

    [21]

    杨利霞, 刘超, 李清亮, 闫玉波 2022 物理学报 71 064101Google Scholar

    Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101Google Scholar

    [22]

    Bernhardt P A, Duncan L M 1982 J. Atmos. Terr. Phys. 44 1061Google Scholar

    [23]

    Gurevich A, Hagfors T, Carlson H, Karashtin A, Zybin K 1998 Phys. Lett. A 239 385Google Scholar

    [24]

    王琛, 周晨, 赵正予, 张援农, 杨许铂 2015 地球物理学报 58 1853

    Wang C, Zhou C, Zhao Z Y, Zhang Y N, Yang X B 2015 Chin. J. Geophys. 58 1853

    [25]

    古列维奇A V著 (刘选谋, 张训械译) 1986 电离层中的非线性现象 (北京: 科学出版社) 第245—249页

    Gurevich A V (translated by Liu X M, Zhang X J) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp245–249

    [26]

    Dysthe K B, Mjølhus E, Pécseli H L, Rypdal K 1983 Phys. Fluids 26 146Google Scholar

    [27]

    Banks P M, Kockarts G 1973 Aeronomy (New York: Academic Press

    [28]

    王琛 2016 博士学位论文 (武汉: 武汉大学)

    Wang C 2016 Ph. D. Dissertation (Wuhan: Wuhan University

    [29]

    黄文耿, 古士芬 2003 空间科学学报 23 181Google Scholar

    Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 181Google Scholar

    [30]

    Stubbe P, Varnum W S 1972 Planet Space Sci. 20 1121Google Scholar

    [31]

    黄文耿, 古士芬 2003 空间科学学报 23 343Google Scholar

    Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 343Google Scholar

    [32]

    Mahmoudian A, Nossa E, Isham B, Bernhardt P A, Briczinski S J, Sulzer M 2019 J. Geophys. Res-Space Phys. 124 3699Google Scholar

    [33]

    Frolov V L, Sergeev E N, Ermakova E N, Komrakov G P 2001 Geophys. Res. Lett. 28 3103Google Scholar

    [34]

    Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X 2017 Space Weather 15 418Google Scholar

    [35]

    Hedin A E 1991 J. Geophys. Res-Space Phys. 96 1159Google Scholar

    [36]

    Alken P, Thébault E, Beggan C D, Amit H, Aubert J, Baerenzung J, Bondar T N, Brown W J, Califf S, Chambodut A, Chulliat A, Cox G A, Finlay C C, Fournier A, Gillet N, Grayver A, Hammer M D, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger J M, Lesur V, Livermore P W, Lowes F J, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman M C, Minami T, Morschhauser A, Mound J E, Nair M, Nakano S, Olsen N, Pavón-Carrasco F J, Petrov V G, Ropp G, Rother M, Sabaka T J, Sanchez S, Saturnino D, Schnepf N R, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta J M, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B 2021 Earth Planets Space 73 1Google Scholar

    [37]

    Mur G 1981 IEEE T. Electromagn. C. 23 377

    [38]

    Eliasson B, Thidé B 2007 Geophys. Res. Lett. 34 L06106

    [39]

    王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第79—81页

    Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp79–81

    [40]

    周晨, 王翔, 刘默然, 倪彬彬, 赵正予 2018 地球物理学报 61 4323Google Scholar

    Zhou C, Wang X, Liu M R, Ni B B, Zhao Z Y 2018 Chin. J. Geophys. 61 4323Google Scholar

  • [1] 罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平. 壁面催化对高温非平衡流场磁控效果影响分析. 物理学报, doi: 10.7498/aps.74.20241307
    [2] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质. 物理学报, doi: 10.7498/aps.73.20240498
    [3] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, doi: 10.7498/aps.69.20191185
    [5] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播. 物理学报, doi: 10.7498/aps.68.20181923
    [6] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, doi: 10.7498/aps.68.20190126
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [8] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, doi: 10.7498/aps.64.114501
    [9] 贾玉坤, 杨仕娥, 郭巧能, 陈永生, 郜小勇, 谷锦华, 卢景霄. 非晶硅太阳电池宽光谱陷光结构的优化设计. 物理学报, doi: 10.7498/aps.62.247801
    [10] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, doi: 10.7498/aps.62.204702
    [11] 耿少飞, 唐德礼, 邱孝明, 聂军伟, 于毅军. 霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响. 物理学报, doi: 10.7498/aps.61.075210
    [12] 欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋. 高空核爆炸X射线电离的时空分布数值模拟. 物理学报, doi: 10.7498/aps.61.242801
    [13] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟. 物理学报, doi: 10.7498/aps.61.083201
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, doi: 10.7498/aps.59.2582
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, doi: 10.7498/aps.58.3268
    [16] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布. 物理学报, doi: 10.7498/aps.58.6633
    [17] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, doi: 10.7498/aps.58.7382
    [18] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, doi: 10.7498/aps.57.5081
    [19] 段耀勇, 郭永辉, 王文生, 邱爱慈. Z箍缩等离子体不稳定性的数值研究. 物理学报, doi: 10.7498/aps.53.3429
    [20] 张家泰, 聂小波, 苏秀敏. 相干与非相干激光成丝不稳定性的数值模拟研究. 物理学报, doi: 10.7498/aps.43.52
计量
  • 文章访问数:  186
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-18
  • 修回日期:  2025-08-15
  • 上网日期:  2025-09-09

/

返回文章
返回