搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尘埃颗粒对低气压射频等离子体中非局域动理学的影响

赵悦悦 缪阳 杨唯 杜诚然

引用本文:
Citation:

尘埃颗粒对低气压射频等离子体中非局域动理学的影响

赵悦悦, 缪阳, 杨唯, 杜诚然

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

ZHAO Yueyue, MIAO Yang, YANG Wei, DU Chengran
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 低气压射频感性放电可以产生更均匀的单分散颗粒和等离子体密度,因此常被用于纳米器件制造中。纳米器件制造需要产生纳米到亚微米尺度的颗粒。由于其通常带负电荷,会显著影响等离子体的放电特性。本文主要研究了尘埃颗粒的尺度和密度对低气压感性耦合等离子体中电子反弹共振加热效应以及基本等离子体性质的影响。模拟结果表明,随着颗粒半径或密度的增加,在电子能量概率函数中以形成平台为特征的反弹共振加热效应逐渐受到抑制并最终消失,导致电子温度下降、电子密度上升、颗粒表面电势增加,而颗粒带电量随着颗粒密度的增加而减少,随着颗粒半径的增加呈现非单调变化。该研究指出由于颗粒存在引发的高能电子的损失可能会为低缺陷、单分散纳米颗粒的生长创造更有利的环境。颗粒质量的提升对降低纳米器件中的陷阱密度以及增强其电学性能具有重要意义。
    Low-pressure radio-frequency inductively coupled discharges can produce uniformly distributed monodisperse particles and plasma densities, making them widely used in nanodevice fabrication. The manufacturing of nanodevices typically requires the generation of particles ranging from nanometer to submicron scales. These particles, usually carrying negative charges, can significantly influence the discharge characteristics of the plasma. This study investigates the effects of particle size and density on electron bounce resonance heating (BRH) and fundamental plasma properties in low-pressure ICPs using a hybrid model. The hybrid model consists of kinetic equation, electromagnetic field equation, global model equation. Simulation results show that with increasing dust radius or density, the BRH effect—characterized by the formation of a plateau in the electron energy probability function—is gradually suppressed and eventually vanishes, accompanied by a decrease in electron temperature, an increase in electron density, and an increase in particle surface potential. The dust charge decreases with increasing particle density, while exhibiting a nonmonotonic variation with particle radius. The results indicate that the loss of high-energy electrons induced by the presence of dust particles may create a more favorable plasma environment for the growth of low-defect, monodisperse nanoparticles. Such improvement in particle quality is crucial for reducing trap densities and enhancing the electrical performance of nanoparticle-based electronic devices.
  • [1]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1

    [2]

    Merlino R L, Goree J A 2004 Phys. Today 57 32

    [3]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, Van De Kerkhof M 2023 Phys. Plasmas 30 120601

    [4]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [5]

    De La Cal E, Martín A, Carralero D, De Pablos J L, Pedrosa M A, Shoji M, Hidalgo C, the TJ-II Team 2013 Phys. Control. Fusion 55 065001

    [6]

    Boufendi L, Bouchoule A 2002 Plasma Sources Sci. Technol. 11 A211

    [7]

    Vladimirov S V, Ostrikov K 2004 Phys. Rep. 393 175

    [8]

    Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25

    [9]

    Kersten H, Deutsch H, Stoffels E, Stoffels W W, Kroesen G M W, Hippler R 2001 Contrib. Plasma Phys. 41 598

    [10]

    Du C R, Feng Y, Wang X G 2022 Manned Spaceflight 28 323 (in Chinese) [杜诚然,冯岩,王晓钢 2022 载人航天 28 323]

    [11]

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦,黄晓江,周鸿颖,郭颖,张菁,冯岩,王晓钢,张立宪,杜诚然2025中国科学:物理学 力学 天文学 55 105206]

    [12]

    Chu J H, I L 1994 Phys. Rev. Lett. 72 4009

    [13]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652

    [14]

    Liu B, Goree J, Feng Y 2010 Phys. Rev. Lett. 105 085004

    [15]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002

    [16]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001

    [17]

    Teng L W, Chang M C, Tseng Y P, I L 2009 Phys. Rev. Lett. 103 245005

    [18]

    Couëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2010 Phys. Rev. Lett. 104 195001

    [19]

    Huang H, Ivlev A V, Nosenko V, Yang W, Du C R 2023 Phys. Rev. E 107 045205

    [20]

    Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149

    [21]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002

    [22]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov S, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, Morfill G E 2010 Phys. Rev. Lett. 105 045001

    [23]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 Europhys. Lett. 85 45001

    [24]

    Winter J 2000 Phys. Plasmas 7 3862

    [25]

    Pigarov A Yu, Krasheninnikov S I, Soboleva T K, Rognlien T D 2005 Phys. Plasmas 12 122508

    [26]

    Smirnov R D, Pigarov A Y, Rosenberg M, Krasheninnikov S I, Mendis D A 2007 Plasma Phys. Control. Fusion 49 347

    [27]

    Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H 1999 Jpn. J. Appl. Phys. 38 5256

    [28]

    Raha D, Das D 2013 Appl. Surf. Sci. 276 249

    [29]

    Cheng Q, Xu S, Long J D, Ni Z H, Rider A E, Ostrikov K 2008 J. Phys. D: Appl. Phys. 41 055406

    [30]

    Bapat A, Perrey C R, Campbell S A, Barry Carter C, Kortshagen U 2003 J. Appl. Phys. 94 1969

    [31]

    Shen Z, Kortshagen U, Campbell S A 2004 J. Appl. Phys. 96 2204

    [32]

    Shen Z, Kim T, Kortshagen U, McMurry P H, Campbell S A 2003 J. Appl. Phys. 94 2277

    [33]

    Denysenko I B, Kersten H,Azarenkov N A 2015 Phys. Rev. E 92 033102

    [34]

    Wang D Z, Dong J Q 1997 J. Appl. Phys. 81 38

    [35]

    Denysenko I, Yu M Y, Ostrikov K, Smolyakov A 2004 Phys. Rev. E 70 046403

    [36]

    Czarnetzki U, Alves L L 2022 Mod. Plasma Phys. 6 31

    [37]

    Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M, Chung C W 2016 Phys. Plasmas 23 063506

    [38]

    Kolobov V, Godyak V 2019 Phys. Plasmas 26 060601

    [39]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [40]

    Chung C W, You K I, Seo S H, Kim S S, Chang H Y 2001 Phys. Plasmas 8 2992

    [41]

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如,高飞,王友年 2021 物理学报 70 095206]

    [42]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206

    [43]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407

    [44]

    Boeuf J P 1992 Phys. Rev. A 46 7910

    [45]

    Alexandrov A L, Schweigert I V, Peeters F M 2008 New J. Phys. 10 093025

    [46]

    Wen H, Schulze J, Fu Y, Sun J Y, Zhang Q Z 2025 Plasma Sources Sci. Technol. 34 03LT01

    [47]

    Fu C C, Dong Y C, Li Y F, Wang W Z, Wang Z H, Liu W 2024 J. Phys. D: Appl. Phys. 57 135201

    [48]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202

    [49]

    Li S, Rabadanov K M, Bogdanov E A, Kudryavtsev A A, Ashurbekov N A, Yuan C, Zhou Z 2021 Plasma Sources Sci. Technol. 30 047001

    [50]

    Liang Y G, Wang Y, Li H, Tian R H, Yuan C X, Kudryavtsev A A, Rabadanov K M, Wu J, Zhou Z X, Tian H 2018 Phys. Plasmas 25 053702

    [51]

    Fedoseev A V, Demin N A, Salnikov M V, Sukhinin G I 2019 Contrib. Plasma Phys. 59 e201800181

    [52]

    Yang W, Wang Y N 2021 Plasma Phys. Control. Fusion 63 035031

    [53]

    DiPeso G, Vahedi V, Hewett D W, Rognlien T D 1994 J. Vac. Sci. Technol. A 12 1387

    [54]

    Belenguer Ph, Blondeau J Ph, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf J P 1992 Phys. Rev. A 46 7923

    [55]

    Yang W, Gao F, Wang Y N 2022 Plasma Sci. Technol. 24 055401

    [56]

    Yang W, Gao F, Wang Y N 2022 Phys. Plasmas 29 063503

    [57]

    Allen J E 1992 Phys. Scr. 45 497

    [58]

    Wood B P, Lieberman M A, Lichtenberg A J 1995 IEEE Trans. Plasma Sci. 23 89

  • [1] 张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰. 尘埃等离子体金属直棘轮中尘埃颗粒的整流. 物理学报, doi: 10.7498/aps.74.20241740
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, doi: 10.7498/aps.73.20240319
    [3] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, doi: 10.7498/aps.72.20222196
    [4] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, doi: 10.7498/aps.72.20230082
    [5] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性. 物理学报, doi: 10.7498/aps.72.20222113
    [6] 李森清, 张肖, 林机. 熔融耦合器中耦合模式与新型孤子结构. 物理学报, doi: 10.7498/aps.71.20221273
    [7] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波. 物理学报, doi: 10.7498/aps.69.20200468
    [8] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解. 物理学报, doi: 10.7498/aps.68.20191045
    [9] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论. 物理学报, doi: 10.7498/aps.66.064202
    [10] 徐彬, 李辉, 王占阁, 许正文, 吴健. 高密度尘埃等离子体的非相干散射理论研究. 物理学报, doi: 10.7498/aps.66.049401
    [11] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动. 物理学报, doi: 10.7498/aps.64.195202
    [12] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.63.024204
    [13] 李学良, 石雁祥. 双麦克斯韦分布尘埃等离子体中尘埃粒子的充电研究. 物理学报, doi: 10.7498/aps.63.215201
    [14] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.62.044214
    [15] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, doi: 10.7498/aps.59.2178
    [16] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究. 物理学报, doi: 10.7498/aps.57.4304
    [17] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, doi: 10.7498/aps.55.5318
    [18] 吴 静, 张鹏云, 宋巧丽, 张家良, 王德真. 反应等离子体中尘埃空洞形成的实验研究. 物理学报, doi: 10.7498/aps.54.4794
    [19] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, doi: 10.7498/aps.52.2671
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  254
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-04

/

返回文章
返回