-
低气压射频感性放电可以产生更均匀的单分散颗粒和等离子体密度,因此常被用于纳米器件制造中。纳米器件制造需要产生纳米到亚微米尺度的颗粒。由于其通常带负电荷,会显著影响等离子体的放电特性。本文主要研究了尘埃颗粒的尺度和密度对低气压感性耦合等离子体中电子反弹共振加热效应以及基本等离子体性质的影响。模拟结果表明,随着颗粒半径或密度的增加,在电子能量概率函数中以形成平台为特征的反弹共振加热效应逐渐受到抑制并最终消失,导致电子温度下降、电子密度上升、颗粒表面电势增加,而颗粒带电量随着颗粒密度的增加而减少,随着颗粒半径的增加呈现非单调变化。该研究指出由于颗粒存在引发的高能电子的损失可能会为低缺陷、单分散纳米颗粒的生长创造更有利的环境。颗粒质量的提升对降低纳米器件中的陷阱密度以及增强其电学性能具有重要意义。Low-pressure radio-frequency inductively coupled discharges can produce uniformly distributed monodisperse particles and plasma densities, making them widely used in nanodevice fabrication. The manufacturing of nanodevices typically requires the generation of particles ranging from nanometer to submicron scales. These particles, usually carrying negative charges, can significantly influence the discharge characteristics of the plasma. This study investigates the effects of particle size and density on electron bounce resonance heating (BRH) and fundamental plasma properties in low-pressure ICPs using a hybrid model. The hybrid model consists of kinetic equation, electromagnetic field equation, global model equation. Simulation results show that with increasing dust radius or density, the BRH effect—characterized by the formation of a plateau in the electron energy probability function—is gradually suppressed and eventually vanishes, accompanied by a decrease in electron temperature, an increase in electron density, and an increase in particle surface potential. The dust charge decreases with increasing particle density, while exhibiting a nonmonotonic variation with particle radius. The results indicate that the loss of high-energy electrons induced by the presence of dust particles may create a more favorable plasma environment for the growth of low-defect, monodisperse nanoparticles. Such improvement in particle quality is crucial for reducing trap densities and enhancing the electrical performance of nanoparticle-based electronic devices.
-
Keywords:
- Radio frequency plasma /
- Dust plasma /
- Non-locality /
- Electron kinetics
-
[1] Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1
[2] Merlino R L, Goree J A 2004 Phys. Today 57 32
[3] Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, Van De Kerkhof M 2023 Phys. Plasmas 30 120601
[4] Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[5] De La Cal E, Martín A, Carralero D, De Pablos J L, Pedrosa M A, Shoji M, Hidalgo C, the TJ-II Team 2013 Phys. Control. Fusion 55 065001
[6] Boufendi L, Bouchoule A 2002 Plasma Sources Sci. Technol. 11 A211
[7] Vladimirov S V, Ostrikov K 2004 Phys. Rep. 393 175
[8] Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25
[9] Kersten H, Deutsch H, Stoffels E, Stoffels W W, Kroesen G M W, Hippler R 2001 Contrib. Plasma Phys. 41 598
[10] Du C R, Feng Y, Wang X G 2022 Manned Spaceflight 28 323 (in Chinese) [杜诚然,冯岩,王晓钢 2022 载人航天 28 323]
[11] Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦,黄晓江,周鸿颖,郭颖,张菁,冯岩,王晓钢,张立宪,杜诚然2025中国科学:物理学 力学 天文学 55 105206]
[12] Chu J H, I L 1994 Phys. Rev. Lett. 72 4009
[13] Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652
[14] Liu B, Goree J, Feng Y 2010 Phys. Rev. Lett. 105 085004
[15] Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002
[16] Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001
[17] Teng L W, Chang M C, Tseng Y P, I L 2009 Phys. Rev. Lett. 103 245005
[18] Couëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2010 Phys. Rev. Lett. 104 195001
[19] Huang H, Ivlev A V, Nosenko V, Yang W, Du C R 2023 Phys. Rev. E 107 045205
[20] Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149
[21] Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002
[22] Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov S, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, Morfill G E 2010 Phys. Rev. Lett. 105 045001
[23] Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 Europhys. Lett. 85 45001
[24] Winter J 2000 Phys. Plasmas 7 3862
[25] Pigarov A Yu, Krasheninnikov S I, Soboleva T K, Rognlien T D 2005 Phys. Plasmas 12 122508
[26] Smirnov R D, Pigarov A Y, Rosenberg M, Krasheninnikov S I, Mendis D A 2007 Plasma Phys. Control. Fusion 49 347
[27] Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H 1999 Jpn. J. Appl. Phys. 38 5256
[28] Raha D, Das D 2013 Appl. Surf. Sci. 276 249
[29] Cheng Q, Xu S, Long J D, Ni Z H, Rider A E, Ostrikov K 2008 J. Phys. D: Appl. Phys. 41 055406
[30] Bapat A, Perrey C R, Campbell S A, Barry Carter C, Kortshagen U 2003 J. Appl. Phys. 94 1969
[31] Shen Z, Kortshagen U, Campbell S A 2004 J. Appl. Phys. 96 2204
[32] Shen Z, Kim T, Kortshagen U, McMurry P H, Campbell S A 2003 J. Appl. Phys. 94 2277
[33] Denysenko I B, Kersten H,Azarenkov N A 2015 Phys. Rev. E 92 033102
[34] Wang D Z, Dong J Q 1997 J. Appl. Phys. 81 38
[35] Denysenko I, Yu M Y, Ostrikov K, Smolyakov A 2004 Phys. Rev. E 70 046403
[36] Czarnetzki U, Alves L L 2022 Mod. Plasma Phys. 6 31
[37] Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M, Chung C W 2016 Phys. Plasmas 23 063506
[38] Kolobov V, Godyak V 2019 Phys. Plasmas 26 060601
[39] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002
[40] Chung C W, You K I, Seo S H, Kim S S, Chang H Y 2001 Phys. Plasmas 8 2992
[41] Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如,高飞,王友年 2021 物理学报 70 095206]
[42] Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206
[43] De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407
[44] Boeuf J P 1992 Phys. Rev. A 46 7910
[45] Alexandrov A L, Schweigert I V, Peeters F M 2008 New J. Phys. 10 093025
[46] Wen H, Schulze J, Fu Y, Sun J Y, Zhang Q Z 2025 Plasma Sources Sci. Technol. 34 03LT01
[47] Fu C C, Dong Y C, Li Y F, Wang W Z, Wang Z H, Liu W 2024 J. Phys. D: Appl. Phys. 57 135201
[48] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202
[49] Li S, Rabadanov K M, Bogdanov E A, Kudryavtsev A A, Ashurbekov N A, Yuan C, Zhou Z 2021 Plasma Sources Sci. Technol. 30 047001
[50] Liang Y G, Wang Y, Li H, Tian R H, Yuan C X, Kudryavtsev A A, Rabadanov K M, Wu J, Zhou Z X, Tian H 2018 Phys. Plasmas 25 053702
[51] Fedoseev A V, Demin N A, Salnikov M V, Sukhinin G I 2019 Contrib. Plasma Phys. 59 e201800181
[52] Yang W, Wang Y N 2021 Plasma Phys. Control. Fusion 63 035031
[53] DiPeso G, Vahedi V, Hewett D W, Rognlien T D 1994 J. Vac. Sci. Technol. A 12 1387
[54] Belenguer Ph, Blondeau J Ph, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf J P 1992 Phys. Rev. A 46 7923
[55] Yang W, Gao F, Wang Y N 2022 Plasma Sci. Technol. 24 055401
[56] Yang W, Gao F, Wang Y N 2022 Phys. Plasmas 29 063503
[57] Allen J E 1992 Phys. Scr. 45 497
[58] Wood B P, Lieberman M A, Lichtenberg A J 1995 IEEE Trans. Plasma Sci. 23 89
计量
- 文章访问数: 254
- PDF下载量: 5
- 被引次数: 0