搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下双分散复杂等离子体颗粒注入中的自组织

蒙雪 杜鑫驰 Andrey M Lipaev Andrey V Zobnin Markus Thoma Michael Kretschmer 杨唯 黄晓江 周鸿颖 杜诚然

引用本文:
Citation:

微重力下双分散复杂等离子体颗粒注入中的自组织

蒙雪, 杜鑫驰, Andrey M Lipaev, Andrey V Zobnin, Markus Thoma, Michael Kretschmer, 杨唯, 黄晓江, 周鸿颖, 杜诚然

Self-organization during the particle injections in binary complex plasmas under microgravity

MENG Xue, DU Xinchi, LIPAEV M Andrey, ZOBNIN V Andrey, THOMA Markus, KRETSCHMER Michael, YANG Wei, HUANG Xiaojiang, ZHOU Hongying, DU Chengran
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 复杂等离子体是由电离气体与介观颗粒组成的非平衡复杂系统。在微重力条件下,颗粒克服重力沉降作用, 在放电空间形成三维复杂等离子体。在国际空间站微重力实验载荷PK-4直流放电中,先后注入两种直径分别为6.8μm与3.4μm的球形树脂颗粒,在电场力、离子拖拽力的作用下,大小颗粒通常无法在同一区域混合共存,发生相分离。在颗粒注入过程中,小颗粒从大颗粒云中通过,在不同条件下产生不同的非平衡自组织结构。当大颗粒云密度较低时,小颗粒在汤川排斥作用下,在放电管中心形成穿越通道;当大颗粒云密度中等时,大小颗粒在穿越过程中各自形成行结构;当大颗粒云密度较大时,由双流不稳定性产生自激发尘埃声波,此时,小颗粒在穿越过程中与大颗粒相互作用,与小颗粒进入前的尘埃声波参数相比,波峰的颗粒密度显著上升,然而波长与频率等宏观物理参数并没有发生明显的变化。该研究系统地总结了微重力条件下双分散复杂等离子体颗粒注入中的多种自组织过程与机理。
    Complex plasmas are composed of ionized gas and mesoscopic particles, representing a typical non-equilibrium complex system. The particles are negatively charged due to the higher thermal velocity of the electrons and interact with each other via Yukawa interactions. As the motions of individual particles can be easily recorded by video microscopy, generic processes in liquids and solids can be studied in complex plasmas at kinetic level. Under microgravity conditions, the particles are confined in the bulk plasma and form a three-dimensional cloud. In the PK-4 Laboratory on board the International Space Station, melamine formaldehyde particles of diameter 6.8 μm and 3.4 μm are injected consecutively in the plasma discharge. Due to the electrostatic force and ion drag force, usually, the particles cannot be mixed in the same region, leading to a phase separation. During the particle injections, small particles penetrate into the cloud of big particles, self-organizing differently under various conditions. When the number density of the big particles is low, small particles form a channel in the center of the discharge tube due to the Yukawa repulsion, where the cloud of the big particles is weakly confined. When the number density of the big particles is mediate, lanes are formed during the penetration of the small particles, representing a typical nonequilibrium self-organization. When the number density of the big particles is high, dust acoustic waves are self-excited due to the two-stream instability. As the small and big particles interact with each other, the particle number density in the wave crests rises drastically. However, the wave numbers and frequencies remain unaltered. This investigation provides insights to the different self-organizations during the particle injections in three-dimensional binary complex plasmas under microgravity conditions.
  • [1]

    Melzer A 2019 Physics of Dusty Plasmas: An Introduction (Heidelberg: Springer Nature Switzerland AG)

    [2]

    Shukla P K 2001 Phys. Plasmas 8 1791

    [3]

    Klumov B A, Morfill G E, Popel S I 2005 J. Exp. Theor. Phys. 100 152

    [4]

    Rosenberg M 1993 Planet. Space Sci. 41 229

    [5]

    Goertz C K 1989 Rev. Geophys. 27 271

    [6]

    Menzel K O, Arp O, Piel A 2010 Phys. Rev. Lett. 104 235002

    [7]

    Heidemann R, Zhdanov S, Sütterlin R, Thomas H M, Morfill G E 2009 Phys. Rev. Lett. 102 135002

    [8]

    Chan C L, Lai Y J, Woon W Y, Chu H Y, I Lin 2004 Plasma Phys. Control. Fusion 47 A273

    [9]

    Steinmuller B, Dietz C, Kretschmer M, Thoma M H 2017 Phys. Plasmas 24 033705

    [10]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002

    [11]

    Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Research 5 013149

    [12]

    Annaratone B M, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C R, Elskens Y, Ivlev A V, Morfill G E, Nosenko V, Sütterlin R K, Schwabe M, Thomas H 2010 Plasma Sources Sci. Technol. 19 065026

    [13]

    Sütterlin K R, Wysocki A, Räth C, Ivlev A V, Thomas H M, Khrapak S, Zhdanov S, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2010 Plasma Phys. Control. Fusion 52 124042

    [14]

    Lipaev A M, Naumkin V N, Khrapak S A, Usachev A D, Petrov O F, Thoma M H, Kretschmer, Du C R, Kononenko O D, Zobnin A V 2025 Phys. Rev. E 111 015209

    [15]

    Dietz C, Budak J, Kamprich T, Kretschmer M, Thoma M H 2021 Contrib. Plasma Phys. 61 e202100079

    [16]

    Ludwig P, Jung H, Kaehlert H, Joost J P, Greiner F, Moldabekov Z, Carstensen J, Sundar S, Bonitz M, Piel A 2018 Eur. Phys. J. D. 72 82

    [17]

    Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V, Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972

    [18]

    Rothermel H, Hagl T, Morfill G E, Thoma M H, Thomas H M 2002 Phys. Rev. Lett. 89 175001

    [19]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [20]

    Schmitz A S, Hanstein L, Klein M, Kretschmer M, Lotz C, Shemakhin A, Thoma M H 2025 Microgravity Sci. Technol. 37 7

    [21]

    Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Rubin-Zuzic M, Ivlev A V, Goree J1999 Phys. Rev. Lett. 83 1598

    [22]

    Nefedov A P, Morfill G E, Fortov V E, Thomas H M, Rothermel H, Hagl T, Ivlev A V, Zuzic M, Klumov B A, Lipaev A M, Molotkov V I, Petrov O, Gidzenko Y P, Krikalev S, Shepherd W, Ivanov A I, Roth M, Binnenbruck H, Goree J, Semenov Y P et al 2003 New J. Phys. 5 33

    [23]

    Thomas H M, Morfill G E, Fortov V E, Ivlev A V, Molotkov V I, Lipaev A M, Hagl T, Rothermel H, Khrapak S A, Suetterlin R K, Rubin-Zuzic M, Petrov O F, Tokarev V I, Krikalev S K, 2008 New J. Phys. 10 033036

    [24]

    Fortov V, Morfill G, Petrov O, Thoma M, Usachev A, Hoefner H, 2005 Plasma Phys. Control. Fusion 47 B537

    [25]

    Knapek C A, Couedel L, Dove A, Goree J, Konopka U, Melzer A, Ratynskaia S, Thoma M H, Thomas H M 2022 Plasma Phys. Control. Fusion 64 124006

    [26]

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 SCIENTIA SINICA Physica, Mechanica & Astronomica 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦 黄晓江 周鸿颖 郭颖 张菁 冯岩 王晓钢 张立宪 杜诚然 2025 中国科学 物理学 力学 天文学 55 105206]

    [27]

    Block D, Melzer A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063001

    [28]

    Sütterlin K R, Wysocki A, Ivlev A V, Räth C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2009 Phys. Rev. Lett. 102 085003

    [29]

    Khrapak S A, Klumov B A, Huber P, Molotkov V I, Lipaev A M, Naumkin V N, Thomas H M, Ivlev A V, Morifll G E, Petrov O F, Fortov V E, Malentschenko Y, Volkov S. 2011 Phys. Rev. Lett. 106 205001

    [30]

    Schwabe M, Zhdanov S, Räth C, Graves D B, Thomas H M, Morfill G E 2014 Phys. Rev. Lett. 112 115002

    [31]

    Pan S, Yang W, Lipaev A M, Zobnin, A V, Li D H, Chang S, Shkaplerov A, Prokopyev S V, Thoma M, Du C R 2024 EPL 147 44001

    [32]

    Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H M, Morfill G E 2007 Phys. Rev. Lett. 99 095002

    [33]

    Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202

    [34]

    Schwabe M, Zhdanov S K, Thomas H M, Ivlev A V, Rubin-Zuzic M, Morfill G E, Molotkov V I, Lipaev A M, Fortov V E, Reiter T 2008 New J. Phys. 10 033037

    [35]

    Sun W, Schwabe M, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Feng Y, Lin Y F, Zhang J, Guo Y, Du C R 2018 EPL 122 55001

    [36]

    Hong X, Sun W, Schwabe M, Du C R, Duan W S 2021 Phys. Rev. E 104 025206

    [37]

    Schwabe M, Khrapak S A, Zhdanov S K, Pustylnik M Y, Räth C, Fink M, Kretschmer M, Lipaev A M, Molotkov V I, Schmitz A S, Thoma M H, Usachev A D, Zobnin A V, Padalka G I, Fortov V E, Petrov O F, Thomas H M 2020 New J. Phys. 22 083079

    [38]

    Wimmer L, Dormagen N, Klein M, Kretschmer M, Lipaev A M, Schwarz M, Usachev A D, Petrov O F, Zobnin A, Thoma M H 2025 New J. Phys. 27 033001

    [39]

    Yaroshenko V V, Khrapak S A, Pustylnik M Y, Thomas H M, Jaiswal S, Lipaev A M, Usachev A D, Petrov O F, Fortov V E 2019 Phys. Plasmas 26 053702

    [40]

    Khrapak S, Yaroshenko V 2020 Plasma Phys. Control. Fusion 62 105006

    [41]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 EPL 85 45001

    [42]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, G E Morfill 2010 Phys. Rev. Lett. 105 045001

    [43]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002

    [44]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1

    [45]

    Chakrabarti J, Dzubiella J, Löwen H 2004 Phys. Rev. E 70 012401

    [46]

    Du C R, Sütterlin K R, Jiang K, Räth C, Ivlev A V, Khrapak S, Schwabe M, H M Thomas, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Malentschenko Y, Yurtschichin F, Lonchakov Y, Morfill G E 2012 New J. Phys. 14 073058

    [47]

    Jiang K, Du C R, Sütterlin K R, Ivlev A V, Morfill G E 2010 EPL 92 65002

    [48]

    Kretschmer M, Antonova T, Zhdanov S, Thoma M 2016 IEEE Trans. Plasma Sci. 44 458

  • [1] 黄渝峰, 贾文柱, 张莹莹, 宋远红. 微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟. 物理学报, doi: 10.7498/aps.73.20231849
    [2] 石燕, 张天辉. 自组织结构的控制: 从平衡过程到非平衡过程. 物理学报, doi: 10.7498/aps.69.20200161
    [3] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征. 物理学报, doi: 10.7498/aps.67.20180614
    [4] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, doi: 10.7498/aps.66.068101
    [5] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, doi: 10.7498/aps.65.158101
    [6] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [7] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, doi: 10.7498/aps.62.134702
    [8] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, doi: 10.7498/aps.62.044701
    [9] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, doi: 10.7498/aps.60.057201
    [10] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, doi: 10.7498/aps.57.6896
    [11] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究. 物理学报, doi: 10.7498/aps.55.6168
    [12] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, doi: 10.7498/aps.54.4236
    [13] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, doi: 10.7498/aps.54.848
    [14] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, doi: 10.7498/aps.52.448
    [15] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, doi: 10.7498/aps.50.377
    [16] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列. 物理学报, doi: 10.7498/aps.50.765
    [17] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, doi: 10.7498/aps.49.2094
    [18] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅰ). 物理学报, doi: 10.7498/aps.49.2494
    [19] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅲ). 物理学报, doi: 10.7498/aps.49.2502
    [20] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅱ). 物理学报, doi: 10.7498/aps.49.2498
计量
  • 文章访问数:  688
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-28

/

返回文章
返回