搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下双分散复杂等离子体颗粒注入中的自组织

蒙雪 杜鑫驰 LIPAEVM Andrey ZOBNINV Andrey THOMAMarkus KRETSCHMERMichael 杨唯 黄晓江 周鸿颖 杜诚然

引用本文:
Citation:

微重力下双分散复杂等离子体颗粒注入中的自组织

蒙雪, 杜鑫驰, LIPAEVM Andrey, ZOBNINV Andrey, THOMAMarkus, KRETSCHMERMichael, 杨唯, 黄晓江, 周鸿颖, 杜诚然

Self-organization during particles injected into binary complex plasmas under microgravity

MENG Xue, DU Xinchi, LIPAEV M Andrey, ZOBNIN V Andrey, THOMA Markus, KRETSCHMER Michael, YANG Wei, HUANG Xiaojiang, ZHOU Hongying, DU Chengran
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 复杂等离子体是由电离气体与介观颗粒组成的非平衡复杂系统. 在微重力条件下, 颗粒克服重力沉降作用, 在放电空间形成三维复杂等离子体. 在国际空间站微重力实验载荷PK-4直流放电中, 先后注入两种直径分别为6.8 μm与3.4 μm的球形树脂颗粒, 在电场力、离子拖拽力的作用下, 大小颗粒通常无法在同一区域混合共存, 发生相分离. 在颗粒注入过程中, 小颗粒从大颗粒云中通过, 在不同条件下产生不同的非平衡自组织结构. 当大颗粒云密度较低时, 小颗粒在汤川排斥作用下, 在放电管中心形成穿越通道; 当大颗粒云密度中等时, 大小颗粒在穿越过程中各自形成行结构; 当大颗粒云密度较大时, 由双流不稳定性产生自激发尘埃声波, 此时, 小颗粒在穿越过程中与大颗粒相互作用, 与小颗粒进入前的尘埃声波参数相比, 波峰的颗粒密度显著上升, 然而波长与频率等宏观物理参数并没有发生明显的变化. 本研究系统总结了微重力条件下双分散复杂等离子体颗粒注入中的多种自组织过程与机理.
    Complex plasmas are composed of ionized gases and mesoscopic particles, representing a typical non-equilibrium complex system. The particles are negatively charged due to the higher thermal velocity of the electrons and interact with each other via Yukawa interactions. Due to the easy recording of the motion of individual particles through video microscopy, the generic processes in liquids and solids in complex plasma can be studied at a kinetic level. Under microgravity conditions, the particles are confined in the bulk plasma and form a three-dimensional cloud. In the PK-4 Laboratory on the International Space Station, melamine formaldehyde particles with diameters of 6.8 μm and 3.4 μm are continuously injected into the plasma discharge. Due to the electrostatic force and ion drag force, usually, the particles cannot be mixed in the same region, thereby leading to a phase separation. During the particle injection, small particles penetrate into the big particle clouds and selforganize in different way under different conditions. When the number density of the big particles is low, small particles form a channel in the center of the discharge tube due to the Yukawa repulsion, where the big particle cloud is weakly confined. When the number density of the big particles is moderate, small particles will form channels during the penetration, representing a typical nonequilibrium self-organization. When the number density of the big particles is high, dust acoustic waves are self-excited due to the two-stream instability. As the small and big particles interact with each other, the number density of particles in the wave crests sharply increases. However, the wave numbers and frequencies remain unchanged. This investigation offers insights into the different self-organizations during the particle injections into three-dimensional binary complex plasmas under microgravity conditions.
  • 图 1  空间站PK-4 实验装置示意图

    Fig. 1.  Schematic diagram of the PK-4 experimental setup.

    图 2  等离子体辉光与颗粒云团

    Fig. 2.  Glow discharge and particle cloud.

    图 3  颗粒云团分布演化与小颗粒输运通道宽度

    Fig. 3.  Evolution of the particle distribution and width of the channel.

    图 4  行结构形成

    Fig. 4.  Formation of lane structure.

    图 5  (a) 单分散自激发波; (b) 双分散自激发波

    Fig. 5.  Diagram of dust acoustic waves in monodisperse (a) and binary (b) complex plasma.

    图 6  小颗粒注入前(a)与注入后(b)尘埃声波的时空演化图以及傅里叶分析获得的频率(c)与波数(d)

    Fig. 6.  Periodgram of dust acoustic waves before (a) and after (b) the injections of small particles with frequencies (c) and wave numbers (d) from Fourier analysis.

    图 7  尘埃声波中颗粒密度演化

    Fig. 7.  Evolution of particle number density in dust acoustic waves.

  • [1]

    Melzer A 2019 Physics of Dusty Plasmas: An Introduction (Heidelberg: Springer Nature Switzerland AG

    [2]

    Shukla P K 2001 Phys. Plasmas 8 1791Google Scholar

    [3]

    Klumov B A, Morfill G E, Popel S I 2005 J. Exp. Theor. Phys. 100 152Google Scholar

    [4]

    Rosenberg M 1993 Planet. Space Sci. 41 229Google Scholar

    [5]

    Goertz C K 1989 Rev. Geophys. 27 271Google Scholar

    [6]

    Menzel K O, Arp O, Piel A 2010 Phys. Rev. Lett. 104 235002Google Scholar

    [7]

    Heidemann R, Zhdanov S, Sütterlin R, Thomas H M, Morfill G E 2009 Phys. Rev. Lett. 102 135002Google Scholar

    [8]

    Chan C L, Lai Y J, Woon W Y, Chu H Y, Lin I 2004 Plasma Phys. Control. Fusion 47 A273

    [9]

    Steinmuller B, Dietz C, Kretschmer M, Thoma M H 2017 Phys. Plasmas 24 033705Google Scholar

    [10]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002Google Scholar

    [11]

    Huang D, Baggioli M, Lu S Y, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149Google Scholar

    [12]

    Annaratone B M, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C R, Elskens Y, Ivlev A V, Morfill G E, Nosenko V, Sütterlin R K, Schwabe M, Thomas H 2010 Plasma Sources Sci. Technol. 19 065026Google Scholar

    [13]

    Sütterlin K R, Wysocki A, Räth C, Ivlev A V, Thomas H M, Khrapak S, Zhdanov S, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2010 Plasma Phys. Control. Fusion 52 124042Google Scholar

    [14]

    Lipaev A M, Naumkin V N, Khrapak S A, Usachev A D, Petrov O F, Thoma M H, Kretschmer, Du C R, Kononenko O D, Zobnin A V 2025 Phys. Rev. E 111 015209Google Scholar

    [15]

    Dietz C, Budak J, Kamprich T, Kretschmer M, Thoma M H 2021 Contrib. Plasma Phys. 61 e202100079Google Scholar

    [16]

    Ludwig P, Jung H, Kaehlert H, Joost J P, Greiner F, Moldabekov Z, Carstensen J, Sundar S, Bonitz M, Piel A 2018 Eur. Phys. J. D 72 82Google Scholar

    [17]

    Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V, Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972Google Scholar

    [18]

    Rothermel H, Hagl T, Morfill G E, Thoma M H, Thomas H M 2002 Phys. Rev. Lett. 89 175001Google Scholar

    [19]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [20]

    Schmitz A S, Hanstein L, Klein M, Kretschmer M, Lotz C, Shemakhin A, Thoma M H 2025 Microgravity Sci. Technol. 37 7Google Scholar

    [21]

    Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Rubin-Zuzic M, Ivlev A V, Goree J 1999 Phys. Rev. Lett. 83 1598Google Scholar

    [22]

    Nefedov A P, Morfill G E, Fortov V E, Thomas H M, Rothermel H, Hagl T, Ivlev A V, Zuzic M, Klumov B A, Lipaev A M, Molotkov V I, Petrov O, Gidzenko Y P, Krikalev S, Shepherd W, Ivanov A I, Roth M, Binnenbruck H, Goree J, Semenov Y P, et al. 2003 New J. Phys. 5 33Google Scholar

    [23]

    Thomas H M, Morfill G E, Fortov V E, Ivlev A V, Molotkov V I, Lipaev A M, Hagl T, Rothermel H, Khrapak S A, Suetterlin R K, Rubin-Zuzic M, Petrov O F, Tokarev V I, Krikalev S K 2008 New J. Phys. 10 033036Google Scholar

    [24]

    Fortov V, Morfill G, Petrov O, Thoma M, Usachev A, Hoefner H 2005 Plasma Phys. Control. Fusion 47 B537Google Scholar

    [25]

    Knapek C A, Couedel L, Dove A, Goree J, Konopka U, Melzer A, Ratynskaia S, Thoma M H, Thomas H M 2022 Plasma Phys. Control. Fusion 64 124006Google Scholar

    [26]

    杨唯, 王垚楠, 梁颖悦, 黄晓江, 周鸿颖, 郭颖, 张菁, 冯岩, 王晓钢, 张立宪, 杜诚然 2025 中国科学: 物理学 力学 天文学 55 105206Google Scholar

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206Google Scholar

    [27]

    Block D, Melzer A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063001Google Scholar

    [28]

    Sütterlin K R, Wysocki A, Ivlev A V, Räth C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2009 Phys. Rev. Lett. 102 085003Google Scholar

    [29]

    Khrapak S A, Klumov B A, Huber P, Molotkov V I, Lipaev A M, Naumkin V N, Thomas H M, Ivlev A V, Morifll G E, Petrov O F, Fortov V E, Malentschenko Y, Volkov S 2011 Phys. Rev. Lett. 106 205001Google Scholar

    [30]

    Schwabe M, Zhdanov S, Räth C, Graves D B, Thomas H M, Morfill G E 2014 Phys. Rev. Lett. 112 115002Google Scholar

    [31]

    Pan S, Yang W, Lipaev A M, Zobnin A V, Li D H, Chang S, Shkaplerov A, Prokopyev S V, Thoma M, Du C R 2024 EPL 147 44001Google Scholar

    [32]

    Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H M, Morfill G E 2007 Phys. Rev. Lett. 99 095002Google Scholar

    [33]

    Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202Google Scholar

    [34]

    Schwabe M, Zhdanov S K, Thomas H M, Ivlev A V, Rubin-Zuzic M, Morfill G E, Molotkov V I, Lipaev A M, Fortov V E, Reiter T 2008 New J. Phys. 10 033037Google Scholar

    [35]

    Sun W, Schwabe M, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Feng Y, Lin Y F, Zhang J, Guo Y, Du C R 2018 EPL 122 55001Google Scholar

    [36]

    Hong X, Sun W, Schwabe M, Du C R, Duan W S 2021 Phys. Rev. E 104 025206Google Scholar

    [37]

    Schwabe M, Khrapak S A, Zhdanov S K, Pustylnik M Y, Räth C, Fink M, Kretschmer M, Lipaev A M, Molotkov V I, Schmitz A S, Thoma M H, Usachev A D, Zobnin A V, Padalka G I, Fortov V E, Petrov O F, Thomas H M 2020 New J. Phys. 22 083079Google Scholar

    [38]

    Wimmer L, Dormagen N, Klein M, Kretschmer M, Lipaev A M, Schwarz M, Usachev A D, Petrov O F, Zobnin A, Thoma M H 2025 New J. Phys. 27 033001Google Scholar

    [39]

    Yaroshenko V V, Khrapak S A, Pustylnik M Y, Thomas H M, Jaiswal S, Lipaev A M, Usachev A D, Petrov O F, Fortov V E 2019 Phys. Plasmas 26 053702Google Scholar

    [40]

    Khrapak S, Yaroshenko V 2020 Plasma Phys. Control. Fusion 62 105006Google Scholar

    [41]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 EPL 85 45001Google Scholar

    [42]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, G E Morfill 2010 Phys. Rev. Lett. 105 045001Google Scholar

    [43]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002Google Scholar

    [44]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1Google Scholar

    [45]

    Chakrabarti J, Dzubiella J, Löwen H 2004 Phys. Rev. E 70 012401

    [46]

    Du C R, Sütterlin K R, Jiang K, Räth C, Ivlev A V, Khrapak S, Schwabe M, H M Thomas, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Malentschenko Y, Yurtschichin F, Lonchakov Y, Morfill G E 2012 New J. Phys. 14 073058Google Scholar

    [47]

    Jiang K, Du C R, Sütterlin K R, Ivlev A V, Morfill G E 2010 EPL 92 65002Google Scholar

    [48]

    Kretschmer M, Antonova T, Zhdanov S, Thoma M 2016 IEEE Trans. Plasma Sci. 44 458Google Scholar

  • [1] 黄渝峰, 贾文柱, 张莹莹, 宋远红. 微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟. 物理学报, doi: 10.7498/aps.73.20231849
    [2] 石燕, 张天辉. 自组织结构的控制: 从平衡过程到非平衡过程. 物理学报, doi: 10.7498/aps.69.20200161
    [3] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征. 物理学报, doi: 10.7498/aps.67.20180614
    [4] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, doi: 10.7498/aps.66.068101
    [5] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, doi: 10.7498/aps.65.158101
    [6] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [7] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, doi: 10.7498/aps.62.134702
    [8] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, doi: 10.7498/aps.62.044701
    [9] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, doi: 10.7498/aps.60.057201
    [10] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, doi: 10.7498/aps.57.6896
    [11] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究. 物理学报, doi: 10.7498/aps.55.6168
    [12] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, doi: 10.7498/aps.54.4236
    [13] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, doi: 10.7498/aps.54.848
    [14] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, doi: 10.7498/aps.52.448
    [15] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, doi: 10.7498/aps.50.377
    [16] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列. 物理学报, doi: 10.7498/aps.50.765
    [17] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, doi: 10.7498/aps.49.2094
    [18] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅲ). 物理学报, doi: 10.7498/aps.49.2502
    [19] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅱ). 物理学报, doi: 10.7498/aps.49.2498
    [20] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅰ). 物理学报, doi: 10.7498/aps.49.2494
计量
  • 文章访问数:  856
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-07
  • 修回日期:  2025-08-20
  • 上网日期:  2025-08-28

/

返回文章
返回