-
复杂等离子体是由电离气体与介观颗粒组成的非平衡复杂系统. 在微重力条件下, 颗粒克服重力沉降作用, 在放电空间形成三维复杂等离子体. 在国际空间站微重力实验载荷PK-4直流放电中, 先后注入两种直径分别为6.8 μm与3.4 μm的球形树脂颗粒, 在电场力、离子拖拽力的作用下, 大小颗粒通常无法在同一区域混合共存, 发生相分离. 在颗粒注入过程中, 小颗粒从大颗粒云中通过, 在不同条件下产生不同的非平衡自组织结构. 当大颗粒云密度较低时, 小颗粒在汤川排斥作用下, 在放电管中心形成穿越通道; 当大颗粒云密度中等时, 大小颗粒在穿越过程中各自形成行结构; 当大颗粒云密度较大时, 由双流不稳定性产生自激发尘埃声波, 此时, 小颗粒在穿越过程中与大颗粒相互作用, 与小颗粒进入前的尘埃声波参数相比, 波峰的颗粒密度显著上升, 然而波长与频率等宏观物理参数并没有发生明显的变化. 本研究系统总结了微重力条件下双分散复杂等离子体颗粒注入中的多种自组织过程与机理.Complex plasmas are composed of ionized gases and mesoscopic particles, representing a typical non-equilibrium complex system. The particles are negatively charged due to the higher thermal velocity of the electrons and interact with each other via Yukawa interactions. Due to the easy recording of the motion of individual particles through video microscopy, the generic processes in liquids and solids in complex plasma can be studied at a kinetic level. Under microgravity conditions, the particles are confined in the bulk plasma and form a three-dimensional cloud. In the PK-4 Laboratory on the International Space Station, melamine formaldehyde particles with diameters of 6.8 μm and 3.4 μm are continuously injected into the plasma discharge. Due to the electrostatic force and ion drag force, usually, the particles cannot be mixed in the same region, thereby leading to a phase separation. During the particle injection, small particles penetrate into the big particle clouds and selforganize in different way under different conditions. When the number density of the big particles is low, small particles form a channel in the center of the discharge tube due to the Yukawa repulsion, where the big particle cloud is weakly confined. When the number density of the big particles is moderate, small particles will form channels during the penetration, representing a typical nonequilibrium self-organization. When the number density of the big particles is high, dust acoustic waves are self-excited due to the two-stream instability. As the small and big particles interact with each other, the number density of particles in the wave crests sharply increases. However, the wave numbers and frequencies remain unchanged. This investigation offers insights into the different self-organizations during the particle injections into three-dimensional binary complex plasmas under microgravity conditions.
-
Keywords:
- complex plasma /
- self-organization /
- microgravity
-
-
[1] Melzer A 2019 Physics of Dusty Plasmas: An Introduction (Heidelberg: Springer Nature Switzerland AG
[2] Shukla P K 2001 Phys. Plasmas 8 1791
Google Scholar
[3] Klumov B A, Morfill G E, Popel S I 2005 J. Exp. Theor. Phys. 100 152
Google Scholar
[4] Rosenberg M 1993 Planet. Space Sci. 41 229
Google Scholar
[5] Goertz C K 1989 Rev. Geophys. 27 271
Google Scholar
[6] Menzel K O, Arp O, Piel A 2010 Phys. Rev. Lett. 104 235002
Google Scholar
[7] Heidemann R, Zhdanov S, Sütterlin R, Thomas H M, Morfill G E 2009 Phys. Rev. Lett. 102 135002
Google Scholar
[8] Chan C L, Lai Y J, Woon W Y, Chu H Y, Lin I 2004 Plasma Phys. Control. Fusion 47 A273
[9] Steinmuller B, Dietz C, Kretschmer M, Thoma M H 2017 Phys. Plasmas 24 033705
Google Scholar
[10] Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002
Google Scholar
[11] Huang D, Baggioli M, Lu S Y, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149
Google Scholar
[12] Annaratone B M, Antonova T, Arnas C, Bandyopadhyay, Chaudhuri M, Du C R, Elskens Y, Ivlev A V, Morfill G E, Nosenko V, Sütterlin R K, Schwabe M, Thomas H 2010 Plasma Sources Sci. Technol. 19 065026
Google Scholar
[13] Sütterlin K R, Wysocki A, Räth C, Ivlev A V, Thomas H M, Khrapak S, Zhdanov S, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2010 Plasma Phys. Control. Fusion 52 124042
Google Scholar
[14] Lipaev A M, Naumkin V N, Khrapak S A, Usachev A D, Petrov O F, Thoma M H, Kretschmer, Du C R, Kononenko O D, Zobnin A V 2025 Phys. Rev. E 111 015209
Google Scholar
[15] Dietz C, Budak J, Kamprich T, Kretschmer M, Thoma M H 2021 Contrib. Plasma Phys. 61 e202100079
Google Scholar
[16] Ludwig P, Jung H, Kaehlert H, Joost J P, Greiner F, Moldabekov Z, Carstensen J, Sundar S, Bonitz M, Piel A 2018 Eur. Phys. J. D 72 82
Google Scholar
[17] Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V, Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972
Google Scholar
[18] Rothermel H, Hagl T, Morfill G E, Thoma M H, Thomas H M 2002 Phys. Rev. Lett. 89 175001
Google Scholar
[19] Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353
Google Scholar
[20] Schmitz A S, Hanstein L, Klein M, Kretschmer M, Lotz C, Shemakhin A, Thoma M H 2025 Microgravity Sci. Technol. 37 7
Google Scholar
[21] Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Rubin-Zuzic M, Ivlev A V, Goree J 1999 Phys. Rev. Lett. 83 1598
Google Scholar
[22] Nefedov A P, Morfill G E, Fortov V E, Thomas H M, Rothermel H, Hagl T, Ivlev A V, Zuzic M, Klumov B A, Lipaev A M, Molotkov V I, Petrov O, Gidzenko Y P, Krikalev S, Shepherd W, Ivanov A I, Roth M, Binnenbruck H, Goree J, Semenov Y P, et al. 2003 New J. Phys. 5 33
Google Scholar
[23] Thomas H M, Morfill G E, Fortov V E, Ivlev A V, Molotkov V I, Lipaev A M, Hagl T, Rothermel H, Khrapak S A, Suetterlin R K, Rubin-Zuzic M, Petrov O F, Tokarev V I, Krikalev S K 2008 New J. Phys. 10 033036
Google Scholar
[24] Fortov V, Morfill G, Petrov O, Thoma M, Usachev A, Hoefner H 2005 Plasma Phys. Control. Fusion 47 B537
Google Scholar
[25] Knapek C A, Couedel L, Dove A, Goree J, Konopka U, Melzer A, Ratynskaia S, Thoma M H, Thomas H M 2022 Plasma Phys. Control. Fusion 64 124006
Google Scholar
[26] 杨唯, 王垚楠, 梁颖悦, 黄晓江, 周鸿颖, 郭颖, 张菁, 冯岩, 王晓钢, 张立宪, 杜诚然 2025 中国科学: 物理学 力学 天文学 55 105206
Google Scholar
Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206
Google Scholar
[27] Block D, Melzer A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 063001
Google Scholar
[28] Sütterlin K R, Wysocki A, Ivlev A V, Räth C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Morfill G E, Löwen H 2009 Phys. Rev. Lett. 102 085003
Google Scholar
[29] Khrapak S A, Klumov B A, Huber P, Molotkov V I, Lipaev A M, Naumkin V N, Thomas H M, Ivlev A V, Morifll G E, Petrov O F, Fortov V E, Malentschenko Y, Volkov S 2011 Phys. Rev. Lett. 106 205001
Google Scholar
[30] Schwabe M, Zhdanov S, Räth C, Graves D B, Thomas H M, Morfill G E 2014 Phys. Rev. Lett. 112 115002
Google Scholar
[31] Pan S, Yang W, Lipaev A M, Zobnin A V, Li D H, Chang S, Shkaplerov A, Prokopyev S V, Thoma M, Du C R 2024 EPL 147 44001
Google Scholar
[32] Schwabe M, Rubin-Zuzic M, Zhdanov S, Thomas H M, Morfill G E 2007 Phys. Rev. Lett. 99 095002
Google Scholar
[33] Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202
Google Scholar
[34] Schwabe M, Zhdanov S K, Thomas H M, Ivlev A V, Rubin-Zuzic M, Morfill G E, Molotkov V I, Lipaev A M, Fortov V E, Reiter T 2008 New J. Phys. 10 033037
Google Scholar
[35] Sun W, Schwabe M, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Feng Y, Lin Y F, Zhang J, Guo Y, Du C R 2018 EPL 122 55001
Google Scholar
[36] Hong X, Sun W, Schwabe M, Du C R, Duan W S 2021 Phys. Rev. E 104 025206
Google Scholar
[37] Schwabe M, Khrapak S A, Zhdanov S K, Pustylnik M Y, Räth C, Fink M, Kretschmer M, Lipaev A M, Molotkov V I, Schmitz A S, Thoma M H, Usachev A D, Zobnin A V, Padalka G I, Fortov V E, Petrov O F, Thomas H M 2020 New J. Phys. 22 083079
Google Scholar
[38] Wimmer L, Dormagen N, Klein M, Kretschmer M, Lipaev A M, Schwarz M, Usachev A D, Petrov O F, Zobnin A, Thoma M H 2025 New J. Phys. 27 033001
Google Scholar
[39] Yaroshenko V V, Khrapak S A, Pustylnik M Y, Thomas H M, Jaiswal S, Lipaev A M, Usachev A D, Petrov O F, Fortov V E 2019 Phys. Plasmas 26 053702
Google Scholar
[40] Khrapak S, Yaroshenko V 2020 Plasma Phys. Control. Fusion 62 105006
Google Scholar
[41] Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 EPL 85 45001
Google Scholar
[42] Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, G E Morfill 2010 Phys. Rev. Lett. 105 045001
Google Scholar
[43] Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002
Google Scholar
[44] Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1
Google Scholar
[45] Chakrabarti J, Dzubiella J, Löwen H 2004 Phys. Rev. E 70 012401
[46] Du C R, Sütterlin K R, Jiang K, Räth C, Ivlev A V, Khrapak S, Schwabe M, H M Thomas, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Malentschenko Y, Yurtschichin F, Lonchakov Y, Morfill G E 2012 New J. Phys. 14 073058
Google Scholar
[47] Jiang K, Du C R, Sütterlin K R, Ivlev A V, Morfill G E 2010 EPL 92 65002
Google Scholar
[48] Kretschmer M, Antonova T, Zhdanov S, Thoma M 2016 IEEE Trans. Plasma Sci. 44 458
Google Scholar
计量
- 文章访问数: 856
- PDF下载量: 6
- 被引次数: 0