搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究

夏瑱超 王伟丽 罗盛宝 魏炳波

引用本文:
Citation:

三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究

夏瑱超, 王伟丽, 罗盛宝, 魏炳波

Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy

Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo
PDF
导出引用
  • 采用自由落体和熔体急冷两种实验技术实现了三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固,研究了其组织形成机理和室温磁性特征. 实验发现,合金熔体在不同快速凝固条件下都没有发生液相分离,其室温组织均由初生Fe相枝晶以及Cu3Sn和Cu6Sn5二个包晶相组成. 计算表明,落管中合金液滴的表面冷却速率和过冷度分别达1.3105 Ks-1和283 K(0.19 TL). 当表面冷却速率增大至3.3103 Ks-1,初生Fe相发生由粗大枝晶向碎断枝晶的演化. 急冷快速凝固过程中,初生Fe相凝固组织沿辊面向自由面方向形成细晶区和粗晶区,其中细晶区以粒状晶为特征而粗晶区存在具有二次分枝的树枝晶. 随着表面冷却速率由8.9106增大至2.7107 Ks-1,Fe相平均晶粒尺寸显著减小,合金条带的矫顽力增大一倍多.
    Rapid solidification is a typical non-equilibrium phase transition process, and the crystallization rate of liquid metal is larger than 1 cms-1. If the alloy is solidified in this case, the solute segregation is reduced or even eliminated and the solid solubility can be improved significantly. Rapid solidification technique can be used to refine the microstructures of alloys, which provides an effective method to prepare the novel metastable materials and improve their strengths, plasticities magnetic properties, etc. In this work, the rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy are investigated by drop tube and melt spinning techniques. It is known that Fe-Cu-Sn ternary alloy forms a typical immiscible system. However, the experimental results reveal that the liquid phase separation does not take place during the rapid solidification of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. The solidification microstructures are all composed of primary Fe dendrites together with Cu3Sn and Cu6Sn5 phases. Under the free fall condition, as the drop tube technique provides microgravity and containerless states, the maximum surface cooling rate and maximum undercooling of alloy droplets are 1.3105 Ks-1and 283 K (0.19 TL), respectively. When the surface cooling rate reaches 1.9103 Ks-1, the primary Fe phase appears as coarse dendrites, and its maximum dendrite length is 41 m. Meanwhile, the Cu3Sn and Cu6Sn5 phases are distributed in the Fe interdendritic spacings. Once the surface cooling rate increases up to 3.3103 Ks-1, the morphology of the primary Fe phase transforms from coarse dendrites into broken dendrites. It is found that the cooling rate and undercooling greatly affect the solidification microstructure of alloy droplets. During the melt spinning experiments, since the large temperature gradient exists between the wheel surface and free surface, the solidification microstructure is subdivided into two crystal zones according to the different microstructure morphologies of Fe phase: fine grain (zone I) and coarse grain (zone II), where zone I is characterized by granular grains while zone II has some dendrites with secondary branch. Under the rapid cooling condition, the microstructures of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy ribbons are refined significantly and show soft magnetic characteristics. As the surface cooling rate increases from 8.9106 to 2.7107 Ks-1, the lattice constant of Fe solid solution rises rapidly and the coercivity increases from 93.7 to 255.6 Oe. Furthermore, the results indicate that the grain size of Fe phase is the main factor influencing the coercivity of alloy ribbons.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51271150,51371150,51571163,51327901)资助的课题.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51571163, 51327901).
    [1]

    Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905

    [2]

    Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701

    [3]

    Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109

    [4]

    Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601

    [5]

    Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405

    [6]

    Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502

    [7]

    Waitukaitis S R, Jaeger H M 2012 Nature 487 205

    [8]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355

    [9]

    Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200

    [10]

    vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329

    [11]

    Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 物理学报 55 1341]

    [12]

    Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501

    [13]

    Mullis A M 2015 J. Appl. Phys. 117 114305

    [14]

    Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603

    [15]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [16]

    Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103

    [17]

    Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 物理学报 53 1909]

    [18]

    Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119

    [19]

    Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503

    [20]

    Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901

    [21]

    Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39

    [22]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335

    [23]

    Miettinen J 2008 Calphad 32 500

    [24]

    Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498

    [25]

    Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482

    [26]

    Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863

    [27]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [28]

    Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097

    [29]

    Poirier D, Salcudean M {1998 J. Heat Transfer 110 56

    [30]

    Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025

    [31]

    Herzer G 1990 IEEE Trans. Mag. 26 1397

    [32]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

  • [1]

    Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905

    [2]

    Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701

    [3]

    Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109

    [4]

    Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601

    [5]

    Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405

    [6]

    Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502

    [7]

    Waitukaitis S R, Jaeger H M 2012 Nature 487 205

    [8]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355

    [9]

    Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200

    [10]

    vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329

    [11]

    Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 物理学报 55 1341]

    [12]

    Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501

    [13]

    Mullis A M 2015 J. Appl. Phys. 117 114305

    [14]

    Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603

    [15]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [16]

    Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103

    [17]

    Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 物理学报 53 1909]

    [18]

    Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119

    [19]

    Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503

    [20]

    Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901

    [21]

    Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39

    [22]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335

    [23]

    Miettinen J 2008 Calphad 32 500

    [24]

    Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498

    [25]

    Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482

    [26]

    Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863

    [27]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [28]

    Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097

    [29]

    Poirier D, Salcudean M {1998 J. Heat Transfer 110 56

    [30]

    Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025

    [31]

    Herzer G 1990 IEEE Trans. Mag. 26 1397

    [32]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

  • [1] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [2] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究. 物理学报, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [3] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [4] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [5] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [6] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [7] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [8] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [9] 张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东. 界面能各向异性对定向凝固枝晶生长的影响. 物理学报, 2013, 62(17): 178105. doi: 10.7498/aps.62.178105
    [10] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [11] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [13] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [14] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [19] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [20] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
计量
  • 文章访问数:  2824
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-08
  • 修回日期:  2016-05-19
  • 刊出日期:  2016-08-05

三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 魏炳波, bbwei@nwpu.edu.cn
    基金项目: 国家自然科学基金(批准号:51271150,51371150,51571163,51327901)资助的课题.

摘要: 采用自由落体和熔体急冷两种实验技术实现了三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固,研究了其组织形成机理和室温磁性特征. 实验发现,合金熔体在不同快速凝固条件下都没有发生液相分离,其室温组织均由初生Fe相枝晶以及Cu3Sn和Cu6Sn5二个包晶相组成. 计算表明,落管中合金液滴的表面冷却速率和过冷度分别达1.3105 Ks-1和283 K(0.19 TL). 当表面冷却速率增大至3.3103 Ks-1,初生Fe相发生由粗大枝晶向碎断枝晶的演化. 急冷快速凝固过程中,初生Fe相凝固组织沿辊面向自由面方向形成细晶区和粗晶区,其中细晶区以粒状晶为特征而粗晶区存在具有二次分枝的树枝晶. 随着表面冷却速率由8.9106增大至2.7107 Ks-1,Fe相平均晶粒尺寸显著减小,合金条带的矫顽力增大一倍多.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回