搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩 阮莹 代富平

引用本文:
Citation:

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

谷倩倩, 阮莹, 代富平

Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition

Gu Qian-Qian, Ruan Ying, Dai Fu-Ping
PDF
导出引用
  • 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.
    High temperature Fe-Al-Nb alloys will be prospectively applied to the industrial field, i.e., aviation, gas turbine, etc. In this paper, rapid solidification of Fe67.5Al22.8Nb9.7 ternary alloy under microgravity condition is realized by using drop tube containerless processing technique. Our purpose is to investigate the microstructural transition pattern and relevant micromechanical properties, and then to reveal the influence of rapid eutectic growth on application performance. The sample of 2 g is placed in a quartz tube with an orifice at the bottom, and the quartz tube is then placed at the top of 3 m drop tube. The sample is inductively melted and further superheated to a certain temperature with the protecting mixture gas composed of argon and helium. The alloy melt is ejected through the orifice by an argon gas flow and dispersed into fine droplets. The droplets are undercooled and finally rapidly solidified during their free fall in the drop tube. The alloy droplets with the diameter sizes ranging from 40 to 1000 m are achieved. The liquidus temperature of the alloy is 1663 K. The microstructure of the alloy consists of Nb(Fe, Al)2 and (Fe) phases. In the master alloy prepared by arc melting, the segregation along the gravity direction takes place because of the difference in cooling rate inside the master alloy. By comparison, the microstructures of the alloy droplets are homogeneous. The variations of thermodynamical parameters with droplet size are analyzed. As droplet diameter decreases, its Nusselt and Reynolds numbers rise from 3 to 8 and from 5 to 137, respectively, its undercooling and cooling rate increase from 50 to 216 K and from 1.23103 to 5.53105 K s-1 respectively. This causes the corresponding microstructural transition. A small amount of primary Nb(Fe, Al)2 phase transforms from dendrite to equiaxed grain, the lamellar eutectic is replaced by the fragmented eutectic. The relationship between eutectic interlamellar spacing and undercooling satisfies an exponential equation, indicating that the eutectic is refined by three times. Consequently, mainly owing to the eutectic refinement, the microhardness of the alloy increases by 10% with the increase of undercooling according to the Hall-Petch behavior in terms of both eutectic grain size and interlamellar spacing. Compared with the microstructure of the alloy undercooled to the same level under electromagnetic levitation in our recent work, the microstructure in drop tube is more refined due to the larger cooling rate, contributing to the microhardness of the alloy increasing by 2%-6%.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.
      Corresponding author: Ruan Ying, ruany@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, U1660108, 51671161), the Aviation Science Foundation of China (Grant No. 2014ZF53069) and Shaanxi Industrial Science and Technology Project, China (Grant No. 2016GY-247).
    [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1]

    Li Y, Li P, Wan Q, Zhou C S, Qu X H 2016 J. Alloys Compd. 689 641

    [2]

    Arai Y, Emi T, Fredriksson H, Shibata H 2005 Metall. Mater. Trans. A 36 3065

    [3]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [4]

    Wang T T, Ge C C, Jia C L, Wang J, Gu T F, Wu H X 2015 Acta Phys. Sin. 64 106103 (in Chinese) [王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新 2015 物理学报 64 106103]

    [5]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [6]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431

    [7]

    Saito T, Itakura M 2013 J. Alloys Compd. 572 124

    [8]

    Ashkenazy Y, Averback R S 2010 Acta Mater. 58 524

    [9]

    Haque N, Cochrane R F, Mullis A M 2016 Intermetallics 76 70

    [10]

    Schroers J, Wu Y, Busch R, Johnson W L 2001 Acta Mater. 49 2773

    [11]

    Li B, Liang X, Earthman J C, Lavernia E J 1996 Acta Mater. 44 2409

    [12]

    Feng L, Shi W Y 2016 Int. J. Heat Mass Trans. 101 629

    [13]

    Erol M, Boyuk U 2016 Trans. Indian Ins. Met. 69 961

    [14]

    Yang S J, Wang W L, Wei B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Clopet C R, Cochrane R F, Mullis A M 2013 Acta Mater. 61 6894

    [16]

    Anestiev L, Froyen, L 2002 J. Appl. Phys. 92 812

    [17]

    Abbaschian R, Lipschutz M D 1996 Mater. Sci. Eng. A 226 13

    [18]

    Lussana D, Castellero A, Vedani M, Ripamonti D, Angella G, Baricco M 2014 J. Alloys Compd. 615 S633

    [19]

    Zhao S, Wei D L, Miao Q 2013 Adv. Eng. Mater. III, PTS 1-3 750-752 734

    [20]

    Shalaby R M 2010 J. Alloys Compd. 505 113

    [21]

    Ruan Y, Wei B B 2008 Chin. Sci. Bull. 53 2716 (in Chinese) [阮莹, 魏炳波 2008 科学通报 53 2716]

    [22]

    Li D J, Feng Y R, Song S Y, Liu Q, Bai Q, Wu G, L N, Ren F Z 2015 Mater. Des. 84 238

    [23]

    Eleno L T F, Errico L A, Gonzales-Ormeno P G, Petrilli H M, Schon C G 2014 Calphad 44 70

    [24]

    Drensler S, Mardare C C, Milenkovic S, Hassel A W 2012 Phys. Status Solidi A 209 854

    [25]

    Morris D G, Muñoz Morris M A, Requejo L M, Baudin C 2006 Intermetallics 14 1204

    [26]

    Yang H Q, Zhang J Y, Luo X X, Zhang Z L, Chen Y 2015 Surf. Coat. Tech. 270 221

    [27]

    Morris D G, Muñoz Morris M A 2007 Mater. Sci. Eng. A 462 45

    [28]

    Morris D G, Muñoz Morris M A, Requejo L M 2006 Scripta Mater. 54 393

    [29]

    Stein F, He C, Prymak O, Voss S, Wossack I 2015 Intermetallics 59 43

    [30]

    Milenkovic S, Palm M 2008 Intermetallics 16 1212

    [31]

    Mota M A, Coelho A A, Bejarano J M Z, Gama S, Caram R 1999 J. Cryst. Growth 198/199 850

    [32]

    Ruan Y, Gu Q Q, L P, Wang H P, Wei B 2016 Mater. Des. 112 239

    [33]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Metall. 45 2821

    [34]

    Adkins N J E, Tsakiropoulos P 1991 J. Mater. Sci. Technol. 7 334

    [35]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [36]

    Yu W, Xie B S, Wang B, Cai Q W, Xu S X 2016 J. Iron Steel Res. Int. 23 910

    [37]

    Elwazri A M, Wanjara P, Yue S 2005 Mater. Sci. Eng. A 404 91

  • [1] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [2] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [5] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [6] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [7] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [8] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [9] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [10] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [11] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [12] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [13] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [15] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [16] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [17] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [18] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [19] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [20] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
计量
  • 文章访问数:  2784
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-05-05

微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 阮莹, ruany@nwpu.edu.cn
    基金项目: 国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.

摘要: 采用落管无容器处理技术实现了Fe67.5Al22.8Nb9.7三元合金在微重力条件下的快速凝固,获得了直径为401000 m的合金液滴.实验中合金液滴的过冷度范围为50216 K,冷却速率随着液滴直径的减小由1.23103 Ks-1增大到5.53105 Ks-1.研究发现,Fe67.5Al22.8Nb9.7 合金液滴的凝固组织均由Nb(Fe,Al)2相和( Fe)相组成,且随着液滴直径的减小,初生Nb(Fe,Al)2相由树枝晶转变为等轴晶,共晶组织发生了约3倍的细化且生长特征由层片共晶向碎断共晶转变;硬质初生Nb(Fe,Al)2相的析出有效提高了合金的显微硬度.与电磁悬浮条件下同过冷合金的凝固组织对比发现,落管条件下的合金液滴凝固组织更细化,使得合金显微硬度提高了2%6%.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回