搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下二维材料结构和光电性能的研究进展

程龄莹 张华芳 毛艳丽

引用本文:
Citation:

高压下二维材料结构和光电性能的研究进展

程龄莹, 张华芳, 毛艳丽

Recent Progress on Structures and Photoelectric Properties of Two-Dimensional Materials under High Pressure

CHENG Lingying, ZHANG Huafang, MAO Yanli
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维材料因其优异的光电性能在基础科学探索与光电子学、能源存储和转换器件等未来技术应用中展现出巨大的潜力,成为了凝聚态物理和材料科学领域的前沿热点。二维材料独特的层状结构使其物理性能极易受外场的影响。高压技术作为一种高效、连续且清洁的调控手段,可以通过压缩原子间距、增强层间耦合,甚至诱导结构相变,进而实现对二维材料结构的精准调控以及光电性能的优化提升。本文以石墨烯、过渡金属二硫族化合物、二维金属卤化物钙钛矿等为例,结合金刚石对顶砧高压装置以及原位高压表征技术,重点探讨了它们在高压下的结构演化规律与光电性能调控机制,并指出了这一新兴研究领域所面临的挑战和机遇,以期为新型高性能功能材料的开发和实际应用有所启发。
    Two-dimensional (2D) materials, owing to their outstanding photoelectric properties, have demonstrated significant potential in both fundamental scientific research and future technological applications, including optoelectronics, energy storage, and conversion devices, establishing them as a cutting-edge research field in condensed matter physics and materials science. The distinctive layered structure of 2D materials renders their physical properties highly sensitive to external stimuli. High-pressure technology, serving as an efficient, continuous, and clean tuning tool, enables precise structural control and optimization of the photoelectric properties of 2D materials by compressing atomic distances, strengthening interlayer coupling, and even inducing structural phase transitions. This article focuses on prototypical two-dimensional materials, including graphene, transition metal dichalcogenides (TMDs), and two-dimensional metal halide perovskites. Employing the diamond anvil cell combined with multimodal in situ high-pressure characterization techniques—such as Xray diffraction, Raman spectroscopy, photoluminescence, and electrical transport measurements—we systematically elucidate the effects of high pressure on the structural and photoelectric properties of these materials. Key findings demonstrate that high pressure can induce the transition of graphene from a semimetal to a semiconductor or even a superconducting state, trigger structural phase transitions and semiconductor-to-metal transitions in TMDs such as MoS2 and WTe2, and result in pressuredependent bandgap narrowing and marked enhancements of luminescence intensity in two-dimensional perovskites. This work underscores the utility of high-pressure techniques in uncovering the intrinsic correlations between the microstructure and macroscopic properties of twodimensional materials. Furthermore, it discusses the key challenges and opportunities in this emerging research area, providing insights for the development and practical application of novel functional materials.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 44 1934

    [3]

    Kannan P K, Late D J, Morgan H, Rout C S 2015 Nanoscale 7 13293

    [4]

    Sun Y, Gao S, Lei F, Xie Y 2014 Chem. Soc. Rev. 44 623

    [5]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439

    [6]

    Chow W L, Yu P, Liu F, Hong J, Wang X, Zeng Q, Hsu C, Zhu C, Zhou J, Wang X, Xia J, Yan J, Chen Y, Wu D, Yu T, Shen Z, Lin H, Jin C, Tay B K, Liu Z 2017 Adv. Mater. 29 1602969

    [7]

    Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter Radiat. Extrems 1 59

    [8]

    Mao H K, Xu J, Bell P M 1986 J. Geophys. Res. Atmos. 91 4673

    [9]

    Zheng H F 2015 Diamond Anvil Cell High-Pressure and High-Temperature Experimental Techniques and Their Applications (Beijing: Science Press) pp78-88 (in Chinese) [郑海飞 2015 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第78-88页]

    [10]

    Zheng J, Zhang H, Dong S, Liu Y, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. 5 2995

    [11]

    Gu L, Liu S, Zhao H, Yu H 2015 ACS Appl. Mater. Interfaces 7 17641

    [12]

    Clark S M, Jeon K J, Chen J Y, Yoo C S 2012 Solid State Commun. 154 15

    [13]

    Ke F, Zhang L, Chen Y, Yin K, Wang C, Tzeng Y K, Lin Y, Dong H, Liu Z, Tse J S, Mao W L, Wu J, Chen B 2020 Nano Lett. 20 5916

    [14]

    Mak K F, Shan J, Heinz T F 2011 Phys. Rev. Lett. 106 046401

    [15]

    Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144

    [16]

    Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H K, Chen B 2019 Proc. Natl. Acad. Sci. USA. 116 9186

    [17]

    Luo B, Wu L, Li D, Zhang Z, Yu X, Li G, Song H 2022 Carbon 196 146

    [18]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H s. P, Koppens F H L 2019 Nature 573 507

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA. 102 10451

    [20]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [21]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [22]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [23]

    Tanwar S, Arya A, Gaur A, Sharma A L 2021 J. Phys. Condens. Matter 33 303002

    [24]

    Cheng X, Li Y, Shang J, Hu C, Ren Y, Liu M, Qi Z 2017 Nano Res. 11 855

    [25]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802

    [26]

    Tosatti E, Hromadova L, Martoňák R 2013 Bull. Am. Phys. Soc. 87 144105

    [27]

    Fan X, Singh D J, Jiang Q, Zheng W T 2016 Phys. Chem. Chem. Phys. 18 12080

    [28]

    Wang S, Zhang J, He D, Zhang Y, Wang L, Xu H, Wen X, Ge H, Zhao Y 2013 J. Phys. Chem. Solids 75 100

    [29]

    Bhattacharyya S, Singh A K 2012 Phys. Rev. B 86 075454

    [30]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K, Akinwande D 2014 Nano Lett. 15 346

    [31]

    Zhou Y, Chen X, Li N, Zhang R, Wang X, An C, Zhou Y, Pan X, Song F, Wang B, Yang W, Yang Z, Zhang Y 2016 AIP Adv. 6 075008

    [32]

    Zhou D, Zhou Y, Pu C, Chen X, Lu P, Wang X, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z, Xing D 2017 NPJ Quantum Mater. 2 19

    [33]

    Yan Y, Jin C, Wang J, Qin T, Li F, Wang K, Han Y, Gao C 2017 J. Phys. Chem. Lett. 8 3648

    [34]

    Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162

    [35]

    Oliva R, Laurien M, Dybala F, Kopaczek J, Qin Y, Tongay S, Rubel O, Kudrawiec R 2019 NPJ 2D Mater. Appl. 3 20

    [36]

    Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752

    [37]

    Hou D, Ma Y, Du J, Yan J, Ji C, Zhu H 2010 J. Phys. Chem. Solids 71 1571

    [38]

    Kao Y C, Huang T, Lin D Y, Huang Y S, Tiong K K, Lee H Y, Lin J M, Sheu H S, Lin C M 2012 J. Chem. Phys. 137 024509

    [39]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731

    [40]

    Jiang F, Yang D, Jiang Y, Liu T, Zhao X, Ming Y, Luo B, Qin F, Fan J, Han H, Zhang L, Zhou Y 2017 J. Am. Chem. Soc. 140 1019

    [41]

    Zhang F, Zhang H, Zhu L, Qin L, Wang Y, Hu Y, Lou Z, Hou Y, Teng F 2019 J. Mater. Chem. C 7 4004

    [42]

    Li L, Sun Z, Wang P, Hu W, Wang S, Ji C, Hong M, Luo J 2017 Angew. Chem. Int. Ed. 56 12150

    [43]

    Xu Y, Wang M, Lei Y, Ci Z, Jin Z 2020 Adv. Energy Mater. 10 2002558

    [44]

    Liu G, Gong J, Kong L, Schaller R D, Hu Q, Liu Z, Yan S, Yang W, Stoumpos C C, Kanatzidis M G, Mao H K, Xu T 2018 Proc. Natl. Acad. Sci. USA. 115 8076

    [45]

    Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901

    [46]

    Liu G, Kong L, Gong J, Yang W, Mao H, Hu Q, Liu Z, Schaller R D, Zhang D, Xu T 2016 Adv. Funct. Mater. 27 1604208

    [47]

    Ou T, Yan J, Xiao C, Shen W, Liu C, Liu X, Han Y, Ma Y, Gao C 2016 Nanoscale 8 11426

    [48]

    Jaffe A, Lin Y, Mao W L, Karunadasa H I 2017 J. Am. Chem. Soc. 139 4330

    [49]

    Yu P Y, Welber B 1978 Solid State Commun. 25 209

    [50]

    Mujica A, Rubio A, Muñoz A, Needs R J 2003 Rev. Mod. Phys. 75 863

    [51]

    Yuan Y, Liu X, Ma X, Wang X, Li X, Xiao J, Li X, Zhang H, Wang L 2019 Adv. Sci. 6 1900240

    [52]

    Jaffe A, Lin Y, Mao W L, Karunadasa H I 2015 J. Am. Chem. Soc. 137 1673

    [53]

    Liu G, Kong L, Guo P, Stoumpos C C, Hu Q, Liu Z, Cai Z, Gosztola D J, Mao H K, Kanatzidis M G, Schaller R D 2017 ACS Energy Lett. 2 2518

    [54]

    Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. USA. 113 8910

    [55]

    Kong L, Liu G, Gong J, Mao L, Chen M, Hu Q, Lü X, Yang W, Kanatzidis M G, Mao H K 2020 Proc. Natl. Acad. Sci. USA. 117 16121

    [56]

    Kong L, Gong J, Spanopoulos I, Yan S, Li Z, Zhu Z, Liu X, Zhu Y, Dong H, Shu H, Hu Q, Yang W, Mao H, Kanatzidis M G, Liu G 2024 Adv. Funct. Mater. 34 2414437

    [57]

    Kong L, Gong J, Hu Q, Capitani F, Celeste A, Hattori T, Sano‐Furukawa A, Li N, Yang W, Liu G, Mao H 2020 Adv. Funct. Mater. 31 2009131

    [58]

    Yin T, Liu B, Yan J, Fang Y, Chen M, Chong W K, Jiang S, Kuo J L, Fang J, Liang P, Wei S, Loh K P, Sum T C, White T J, Shen Z X 2018 J. Am. Chem. Soc. 141 1235

    [59]

    Fang Y, Wang J, Zhang L, Niu G, Sui L, Wu G, Yuan K, Wang K, Zou B 2023 Chem. Sci. 14 2652

    [60]

    Li X, Wang S, Zhao S, Li L, Li Y, Zhao B, Shen Y, Wu Z, Shan P, Luo J 2018 Chem. Eur. J. 24 9243

    [61]

    Duan D, Ge C, Rahaman M Z, Lin C H, Shi Y, Lin H, Hu H, Wu T 2023 NPG Asia Mater. 15 8

    [62]

    Wang Y, Guo S, Luo H, Zhou C, Lin H, Ma X, Hu Q, Du M H, Ma B, Yang W, Lü X 2020 J. Am. Chem. Soc. 142 16001

    [63]

    Wang S, Yao Y, Wu Z, Peng Y, Li L, Luo J 2018 J. Mater. Chem. C 6 12267

    [64]

    Cheng X, Xie Z, Zheng W, Li R, Deng Z, Tu D, Shang X, Xu J, Gong Z, Li X, Chen X 2022 Adv. Sci. 9 2103724

    [65]

    Meng X, Ji S, Wang Q, Wang X, Bai T, Zhang R, Yang B, Li Y, Shao Z, Jiang J, Han K, Liu F 2022 Adv. Sci. 9 2203596

    [66]

    Luo H, Guo S, Zhang Y, Bu K, Lin H, Wang Y, Yin Y, Zhang D, Jin S, Zhang W, Yang W, Ma B, Lü X 2021 Adv. Sci. 8 2100786

    [67]

    Ratté J, Macintosh M F, DiLoreto L, Liu J, Mihalyi-Koch W, Hautzinger M P, Guzei I A, Dong Z, Jin S, Song Y 2023 J. Phys. Chem. Lett. 14 403

    [68]

    Guo S, Zhao Y, Bu K, Fu Y, Luo H, Chen M, Hautzinger M P, Wang Y, Jin S, Yang W, Lü X 2020 Angew. Chem. Int. Ed. 59 17533

    [69]

    Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S a. T, Zou B 2018 Nat. Commun. 9 4506

    [70]

    Liu S, Sun S, Gan C K, Del Águila A G, Fang Y, Xing J, Ha T T DO, White T J, Li H, Huang W, Xiong Q 2019 Sci. Adv. 5 eaav9445

    [71]

    Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213

    [72]

    Li M, Liu T, Wang Y, Yang W, Lü X 2020 Matter Radiat. Extrems 5 018201

    [73]

    Fang Y, Zhang L, Wu L, Yan J, Lin Y, Wang K, Mao W L, Zou B 2019 Angew. Chem. Int. Ed. 58 15249

    [74]

    Mao L, Wu Y, Stoumpos C C, Wasielewski M R, Kanatzidis M G 2017 J. Am. Chem. Soc. 139 5210

    [75]

    Szafrański M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458

    [76]

    Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y 2015 J. Am. Chem. Soc. 137 11144

    [77]

    Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663

    [78]

    Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969

    [79]

    Cui H, Zhang H, Xu S, Cheng L, Tao H, Wang L, Pan G, You W, Mao Y 2025 Appl. Phys. Lett. 126 173101

    [80]

    Chen Y, Fu R, Wang L, Ma Z, Xiao G, Wang K, Zou B 2019 J. Mater. Chem. A 7 6357

    [81]

    Guo S, Bu K, Li J, Hu Q, Luo H, He Y, Wu Y, Zhang D, Zhao Y, Yang W, Kanatzidis M G, Lü X 2021 J. Am. Chem. Soc. 143 2545

    [82]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582

    [83]

    Li S, Luo J, Liu J, Tang J 2019 J. Phys. Chem. Lett. 10 1999

    [84]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872

    [85]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098

    [86]

    Lv J, Jia H, Chen G, Wang Y, Liu M, Ning Y, Wang Y, Yuan L, Lu M, Zhang J 2022 ACS Appl. Mater. Interfaces 14 46056

    [87]

    Zhang J, Zhang Y, Wu X, Ma Y, Chien S Y, Guan R, Zhang D, Yang B, Yan B, Yang J 2018 ACS Appl. Mater. Interfaces 10 42856

    [88]

    Wang Y, Xu Y, Hu M, Ling H, Zhu X 2020 Nanophotonics 9 1601

    [89]

    Li X H, Shan-Shan L, Cui H L, Zhang R Z 2020 ACS Omega 5 22248

    [90]

    Shivani V, Sriram S 2025 Diamond Relat. Mater.154 112192

    [91]

    Ye C, Liu M 2022 J. Mol. Model. 28 40

    [92]

    Yang J, Wu X, Li X, Liu Y, Gao M, Liu X, Kong L, Yang S 2011 Appl. Phys. A 105 161

    [93]

    Li Y, Zhang J, Wang Q, Jin Y, Huang D, Cui Q, Zou G 2010 J. Phys. Chem. B 114 9429

    [94]

    Hu K, Yao M, Yang Z, Xiao G, Zhu L, Zhang H, Liu R, Zou B, Liu B 2020 Nanoscale 12 12300

    [95]

    Ruan L W, Zhu Y J, Qiu L G, Yuan Y P, Lu Y X 2014 Comput. Mater. Sci. 91 258

    [96]

    Zhou J, Zhu M, Han Y, Zhou X, Wang S, Chen J, Wu H, Hou Y, Lu Y 2024 J. Appl. Phys. 135 224301

    [97]

    Wickramaratne D, Weston L, Van De Walle C G 2018 J. Phys. Chem. C 122 25524

    [98]

    Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 5 eaav0129

    [99]

    Yeol K MA, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88

    [100]

    Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446

    [101]

    Lee G H, Cui X, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P, Hone J 2015 ACS Nano 9 7019

    [102]

    Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S, Eaves L 2013 Nat. Commun. 4 1794

    [103]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Katsnelson M I, Eaves L, Morozov S V, Mayorov A S, Peres N M R, Neto A H C, Leist J, Geim A K, Ponomarenko L A, Novoselov K S 2012 Nano Lett. 12 1707

    [104]

    Segura A, Cuscó R, Taniguchi T, Watanabe K, Cassabois G, Gil B, Artús L 2019 J. Phys. Chem. C 123 20167

    [105]

    Xue Y, Wang H, Tan Q, Zhang J, Yu T, Ding K, Jiang D, Dou X, Shi J J, Sun B Q 2018 ACS Nano 12 7127

    [106]

    Akamaru H, Onodera A, Endo T, Mishima O 2002 J. Phys. Chem. Solids 63 887

  • [1] 闫晓丽, 冯振豹, 于蓝, 刘才龙. 高压下HfS2的光电性质. 物理学报, doi: 10.7498/aps.74.20250893
    [2] 陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣. 非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化. 物理学报, doi: 10.7498/aps.74.20250849
    [3] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质. 物理学报, doi: 10.7498/aps.74.20250498
    [4] 吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田. 高压下非铅双钙钛矿Cs2TeCl6的光电性质调控. 物理学报, doi: 10.7498/aps.74.20250693
    [5] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, doi: 10.7498/aps.72.20230730
    [6] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, doi: 10.7498/aps.72.20230020
    [7] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, doi: 10.7498/aps.71.20211048
    [9] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, doi: 10.7498/aps.71.20220407
    [10] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [11] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, doi: 10.7498/aps.70.20201325
    [12] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, doi: 10.7498/aps.70.20211048
    [13] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [14] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, doi: 10.7498/aps.66.039101
    [15] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究. 物理学报, doi: 10.7498/aps.64.017303
    [16] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, doi: 10.7498/aps.64.034211
    [17] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, doi: 10.7498/aps.61.240701
    [18] 宋雪云, 张俊兵, 曾祥华, 董雅娟. 电极形状对GaN基发光二极管芯片性能的影响. 物理学报, doi: 10.7498/aps.59.4989
    [19] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, doi: 10.7498/aps.58.529
    [20] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, doi: 10.7498/aps.55.472
计量
  • 文章访问数:  134
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-05

/

返回文章
返回