搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下HfS2的光电性质研究

闫晓丽 冯振豹 于蓝 刘才龙

引用本文:
Citation:

高压下HfS2的光电性质研究

闫晓丽, 冯振豹, 于蓝, 刘才龙

Research on the Photoelectric Properties of HfS2 under High Pressure

YAN Xiaoli, FENG Zhenbao, YU Lan, LIU Cailong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • HfS2作为一种典型的IVB族过渡金属硫化物(Transition Metal Dichalcogenides,TMDs)材料,凭借其高载流子迁移率和层间电流密度特性,在光传感、通信、成像等多个前沿领域展现出巨大的潜在应用价值.近年来的研究揭示了压力对TMDs光谱响应范围和电输运性质的重要调控作用,这激发了我们对HfS2光电性质进行压力调控的研究兴趣.本研究采用金刚石对顶砧装置进行高压原位光电流、拉曼散射光谱、交流阻抗谱和紫外-可见吸收光谱测量,并结合第一性原理计算,系统地探究了压力对HfS2电输运和光电性质的影响.研究结果显示,HfS2的光电流随着压力的增加持续增强.30.1 GPa,HfS2的光电流比初始值提高了5个数量级,这一显著增强归因于S-S层间作用力增强导致的带隙和电阻减小.此外,光学测量实验及理论计算结果进一步表明,HfS2的晶体结构、禁带宽度及光学性质均可通过压力进行有效调控.本研究为压力调控层状材料的光电性能提供了新思路.
    HfS2, as a typical IVB group transition metal dichalcogenide (TMDs) material, has shown great potential in various fields such as photo-sensing, communication, and imaging due to its high carrier mobility and interlayer current density characteristics. Recent studies have revealed the significant role of pressure in modulating the spectral response range and electrical transport properties of TMDs, which has sparked our interest in studying the pressure regulation of the optoelectronic properties of HfS2. In this study, we have performed diamond anvil cell based high-pressure in-situ photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, and ultraviolet-visible absorption spectroscopy measurements, and combined first-principles calculations to systematically investigate the effects of pressure on the electrical transport and optoelectronic properties of HfS2. The experimental results showed that the photocurrent of HfS2 continuously increased with pressure. Within the pressure range of 0-10.2 GPa, the photocurrent and response of HfS2 show a rapid upward trend with increasing pressure; at 10.2 GPa, the photocurrent and response of HfS2 (Iph = 0.32 μA, R = 8.19 μA/W) are about three orders of magnitude higher than the initial values at 0.5 GPa (Iph = 1.40×10-4 μA, R = 3.56×10-3 μA/W). At the pressure above 10.2 GPa, the growth rate of photocurrent and response slow down significantly, which is related to the structural phase transition of HfS2 near 10.0 GPa. Further compression to 30.1 GPa results in a maximum photocurrent of 3.35 μA, which was five orders of magnitude higher than the initial value at 0.5 GPa. This significant enhancement is attributed to the strengthening of S-S interlayer interaction forces under pressure, which leads to a decrease in band gap and resistivity. In addition, we use the WIEN2k software package, based on the modified Becke-Johnson (mBJ) exchange-correlation potential, to calculate and analyze the electronic band structure and optical properties of HfS2 in its initial phase. The calculation results have shown that with increasing pressure, the optical absorption coefficient and the real part of the photoconductivity of HfS2 along the c-axis significantly increased, further revealing the intrinsic physical mechanism of the enhanced photoresponse of HfS2 under pressure. This study provides a new approach for pressure regulation of the optoelectronic properties of layered materials.
  • [1]

    Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713

    [2]

    Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918

    [3]

    Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033

    [4]

    Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Phys. E 144 115456

    [5]

    Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901

    [6]

    Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763

    [7]

    Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731

    [8]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768

    [9]

    Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310

    [10]

    Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927

    [11]

    Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139

    [12]

    Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 010173

    [13]

    Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039

    [14]

    Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227

    [15]

    Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044

    [16]

    Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016

    [17]

    Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802 (in Chinese) [殷雪彤,廖敦渊,潘东,王鹏,刘冰冰 2025 物理学报 74 067802]

    [18]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134

    [19]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216

    [20]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105

    [21]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663

    [22]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, and Liu B B 2022 Mater. Res. Lett. 10 547

    [23]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419

    [24]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202

    [25]

    Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258

    [26]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381

    [27]

    Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250

    [28]

    Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802

    [29]

    Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118

    [30]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904

    [31]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611

    [32]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692

    [33]

    Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101

    [34]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401

    [35]

    Terashima K, Imai I 1987 Solid State Commun. 63 315

    [36]

    Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445

    [37]

    Jiang H 2011 J. Chem. Phys. 134 204705

    [38]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019

    [39]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163

    [40]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636

    [41]

    Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859

    [42]

    Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121

    [43]

    Roubi L, Carlone C 1988 Phys. Rev. B 37 6808

    [44]

    Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45

    [45]

    Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757

    [46]

    Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541

    [47]

    Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717

    [48]

    Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101 (in Chinese) [王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 物理学报 71 096101]

    [49]

    Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044

  • [1] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质. 物理学报, doi: 10.7498/aps.74.20250498
    [2] 陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海. 高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250287
    [3] 吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田. 高压下非铅双钙钛矿Cs2TeCl6的光电性质调控研究. 物理学报, doi: 10.7498/aps.74.20250693
    [4] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能. 物理学报, doi: 10.7498/aps.74.20250613
    [5] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, doi: 10.7498/aps.73.20231147
    [6] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, doi: 10.7498/aps.72.20221656
    [7] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, doi: 10.7498/aps.71.20212276
    [8] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, doi: 10.7498/aps.69.20200240
    [9] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, doi: 10.7498/aps.69.20200988
    [10] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, doi: 10.7498/aps.68.20190630
    [11] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [12] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.62.046202
    [13] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, doi: 10.7498/aps.62.140702
    [14] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [15] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, doi: 10.7498/aps.61.234205
    [16] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.097102
    [17] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.177104
    [18] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.107101
    [19] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, doi: 10.7498/aps.59.4235
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, doi: 10.7498/aps.56.117
计量
  • 文章访问数:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-30

/

返回文章
返回