-
HfS2作为一种典型的IVB族过渡金属硫化物(Transition Metal Dichalcogenides,TMDs)材料,凭借其高载流子迁移率和层间电流密度特性,在光传感、通信、成像等多个前沿领域展现出巨大的潜在应用价值.近年来的研究揭示了压力对TMDs光谱响应范围和电输运性质的重要调控作用,这激发了我们对HfS2光电性质进行压力调控的研究兴趣.本研究采用金刚石对顶砧装置进行高压原位光电流、拉曼散射光谱、交流阻抗谱和紫外-可见吸收光谱测量,并结合第一性原理计算,系统地探究了压力对HfS2电输运和光电性质的影响.研究结果显示,HfS2的光电流随着压力的增加持续增强.30.1 GPa,HfS2的光电流比初始值提高了5个数量级,这一显著增强归因于S-S层间作用力增强导致的带隙和电阻减小.此外,光学测量实验及理论计算结果进一步表明,HfS2的晶体结构、禁带宽度及光学性质均可通过压力进行有效调控.本研究为压力调控层状材料的光电性能提供了新思路.HfS2, as a typical IVB group transition metal dichalcogenide (TMDs) material, has shown great potential in various fields such as photo-sensing, communication, and imaging due to its high carrier mobility and interlayer current density characteristics. Recent studies have revealed the significant role of pressure in modulating the spectral response range and electrical transport properties of TMDs, which has sparked our interest in studying the pressure regulation of the optoelectronic properties of HfS2. In this study, we have performed diamond anvil cell based high-pressure in-situ photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, and ultraviolet-visible absorption spectroscopy measurements, and combined first-principles calculations to systematically investigate the effects of pressure on the electrical transport and optoelectronic properties of HfS2. The experimental results showed that the photocurrent of HfS2 continuously increased with pressure. Within the pressure range of 0-10.2 GPa, the photocurrent and response of HfS2 show a rapid upward trend with increasing pressure; at 10.2 GPa, the photocurrent and response of HfS2 (Iph = 0.32 μA, R = 8.19 μA/W) are about three orders of magnitude higher than the initial values at 0.5 GPa (Iph = 1.40×10-4 μA, R = 3.56×10-3 μA/W). At the pressure above 10.2 GPa, the growth rate of photocurrent and response slow down significantly, which is related to the structural phase transition of HfS2 near 10.0 GPa. Further compression to 30.1 GPa results in a maximum photocurrent of 3.35 μA, which was five orders of magnitude higher than the initial value at 0.5 GPa. This significant enhancement is attributed to the strengthening of S-S interlayer interaction forces under pressure, which leads to a decrease in band gap and resistivity. In addition, we use the WIEN2k software package, based on the modified Becke-Johnson (mBJ) exchange-correlation potential, to calculate and analyze the electronic band structure and optical properties of HfS2 in its initial phase. The calculation results have shown that with increasing pressure, the optical absorption coefficient and the real part of the photoconductivity of HfS2 along the c-axis significantly increased, further revealing the intrinsic physical mechanism of the enhanced photoresponse of HfS2 under pressure. This study provides a new approach for pressure regulation of the optoelectronic properties of layered materials.
-
Keywords:
- HfS2 /
- High-Pressure /
- Photoelectric Properties
-
[1] Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713
[2] Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918
[3] Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033
[4] Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Phys. E 144 115456
[5] Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901
[6] Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763
[7] Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731
[8] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768
[9] Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310
[10] Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927
[11] Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139
[12] Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 010173
[13] Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039
[14] Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227
[15] Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044
[16] Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016
[17] Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802 (in Chinese) [殷雪彤,廖敦渊,潘东,王鹏,刘冰冰 2025 物理学报 74 067802]
[18] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134
[19] Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216
[20] Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105
[21] Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663
[22] Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, and Liu B B 2022 Mater. Res. Lett. 10 547
[23] Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419
[24] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202
[25] Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258
[26] Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381
[27] Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250
[28] Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802
[29] Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118
[30] Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904
[31] Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611
[32] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692
[33] Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101
[34] Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401
[35] Terashima K, Imai I 1987 Solid State Commun. 63 315
[36] Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445
[37] Jiang H 2011 J. Chem. Phys. 134 204705
[38] Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019
[39] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163
[40] Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636
[41] Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859
[42] Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121
[43] Roubi L, Carlone C 1988 Phys. Rev. B 37 6808
[44] Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45
[45] Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757
[46] Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541
[47] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717
[48] Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101 (in Chinese) [王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 物理学报 71 096101]
[49] Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044
计量
- 文章访问数: 24
- PDF下载量: 2
- 被引次数: 0