-
随着高速成像、航空航天及光通信等领域的快速发展,对覆盖宽光谱范围且具备高性能的光电探测器需求日益迫切。二维材料因其独特的结构维度、可调的电子结构以及优异的载流子输运特性等,被视为宽谱光电探测的理想候选材料。然而,实现兼具高响应度与高速响应的宽谱探测器仍面临诸多挑战。本文首先介绍了二维材料的光电特性基础,包括带隙调控机制与光谱响应范围、载流子输运及复合过程、光吸收系特性等,为理解其宽谱探测能力奠定理论基础。随后,系统梳理了窄带隙二维材料、二维拓扑材料以及二维钙钛矿材料体系在宽谱探测中的研究进展。接下来重点探讨了异质集成、缺陷调控、光场增强以及应变调控等四类提升二维材料光电探测性能的有效途径。最后,对二维材料宽谱光电探测器在高性能、低功耗、多功能化及规模化应用方面的挑战与发展前景进行了展望,指出多种策略的协同集成有望推动新一代宽谱光电探测器的实用化进程。The growing demands of high-speed imaging, aerospace, and optical communication have driven intensive research on broadband photodetectors with high sensitivity and fast response. Twodimensional (2D) materials, featuring atomic-scale thickness, tunable bandgaps, and excellent carrier transport properties, are regarded as ideal candidates for next-generation optoelectronics. However, their limited light absorption and intrinsic recombination losses remain key challenges. This review provides an overview of recent progress in 2Dmaterial-based broadband photodetectors. First, the fundamental optoelectronic properties of 2D materials, including bandgap modulation, carrier dynamics, and light - matter interactions, are discussed to clarify their broadband detection potential. Representative material systems - such as narrow-bandgap semiconductors, 2D topological materials, and perovskites - are summarized, demonstrating detection capabilities spanning from ultraviolet to mid-infrared regions. To overcome intrinsic limitations, four optimization strategies are highlighted: heterostructure engineering for efficient charge separation and extended spectral response; defect engineering to introduce mid-gap states and enhance sub-bandgap absorption; optical field enhancement through plasmonic nanostructures and optical cavities to improve responsivity; and strain engineering for reversible band structure tuning, particularly suited for flexible devices. These strategies have enabled remarkable improvements in responsivity, detectivity, and bandwidth, with some devices achieving ultrabroadband detection and multifunctionality. In summary, 2D materials and their hybrids have shown great promise for broadband photodetection, with advances spanning from material innovation to device architecture optimization. The reviewed strategies - heterostructure integration, defect modulation, optical field enhancement, and strain engineering - collectively demonstrate the diverse pathways to overcome intrinsic limitations and boost device performance. Looking forward, the rational combination of these approaches is expected to further expand the detection window, improve sensitivity, and enable multifunctional operation, thereby paving the way toward nextgeneration broadband photodetectors with versatile applications in imaging, sensing, and optoelectronic systems
-
Keywords:
- Two-dimensional materials /
- Broadband photodetectors /
- Heterostructure integration /
- Regulatory strategies
-
[1] Guan R Q, Xu H, Lou Z, Zhao Z, Wang L L 2024 Adv. Sci. 11 2402530
[2] Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30
[3] Mearaj T, Farooq A, Hafiz A K, Khanuja M, Zargar R A, Bhat A A 2024 ACS Appl. Bio Mater. 7 3483
[4] Ma T J, Xue N, Muhammad A, Fang G, Yan J Y, Chen R K, Sun J H, Sun X G 2024 Micromachines 15 1249
[5] Liu X Z, Yang X Z, Tang Q, Lv Y, Zhang G, Feng W L 2024 J. Phys. D: Appl. Phys. 57 373002
[6] Yao J D, Yang G W 2020 Nanoscale 12 454
[7] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899
[8] Long M S, Wang P, Fang H H, Hu W D 2019 Adv. Funct. Mater. 29 1803807
[9] Shuck C E, Xiao X, Wang Z Y 2024 Acc. Chem. Res. 57 3079
[10] Song J M, Yu Y F, Zheng T, Cui Y Y, Chen Q S, Zhao W W, Yang F, Lu J P, Liu H W, Ni Z H 2025 Appl. Phys. Lett. 126 043102
[11] Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X R, Low T 2020 npj 2D Mater. Appl. 4 29
[12] Tian Y, Liu H, Li J, Liu B D, Liu F 2025 Nanomaterials 15 431
[13] Dhanabalan S C, Ponraj J S, Zhang H, Bao Q L 2016 Nanoscale 8 6410
[14] Zulfiqar M W, Nisar S, Dastgeer G, Rabeel M, Ghazanfar H, Ali A, Imran M, Kim H, Kim D K 2025 Nanoscale 17 17881
[15] Rani A, Verma A, Yadav B C 2024 Mater. Adv. 5 3535
[16] Li X, Liu K X, Wu D, Lin P, Shi Z F, Li X J, Zeng L H, Chai Y, Lau S P, Tsang Y H 2025 Adv. Mater. n/a 2415717
[17] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 IEEE Trans. Electron Devices 62 3192
[18] Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104
[19] Xiang D, Han C, Zhang J L, Chen W 2014 Sci. Rep. 4 4891
[20] Shu H B, Li Y H, Niu X H, Wang J L 2016 ACS Appl. Mater. Interfaces 8 13150
[21] Yin C D, He S X, Fan X F, Xiao Y K, Zhao L C, Gao L M 2024 Adv. Opt. Mater. 12 2401122
[22] Ouyang Y, Zhang C Y, Wang J, Guo Z, Wang Z G, Dong M D 2025 Adv. Sci. 12 2416259
[23] Liao L, Peng H L, Liu Z F 2014 J. Am. Chem. Soc. 136 12194
[24] Tiwari S K, Sahoo S, Wang N N, Huczko A 2020 J. Sci.: Adv. Mater. Devices 5 10
[25] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611
[26] Rai A, Movva H C P, Roy A, Taneja D, Chowdhury S, Banerjee S K 2018 Crystals 8 316
[27] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
[28] Xu Y J, Yuan J, Zhang K, Hou Y, Sun Q, Yao Y M, Li S J, Bao Q L, Zhang H, Zhang Y G 2017 Adv. Funct. Mater. 27 1702211
[29] Zhang M, Biesold G M, Lin Z Q 2021 Chem. Soc. Rev. 50 13346
[30] Mu X, Wang J, Sun M 2019 Mater. Today Phys. 8 92
[31] Han F W, Xu W, Li L L, Zhang C, Dong H M, Peeters F M 2017 Phys. Rev. B 95 115436
[32] Long G, Maryenko D, Shen J Y, Xu S G, Hou J Q, Wu Z F, Wong W K, Han T Y, Lin J X Z, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768
[33] Sun Y H, Wang R M, Liu K 2017 Appl. Phys. Rev. 4 011301
[34] Zhang X L, Huang J C, Zuo H Z, Zhang Y F, Yang R Z, Chen J L, Li G J, Li W, Peng Z Y 2025 Sol. Energy Mater. Sol. Cells 292 113798
[35] Liu F, Fan Z X 2023 Chem. Soc. Rev. 52 1723
[36] Zhang X J, Shao Z B, Zhang X H, He Y Y, Jie J S 2016 Adv. Mater. 28 10409
[37] Malik M, Iqbal M A, Choi J R, Pham P V 2022 Front. Chem. 10 905404
[38] Xu Y J, Shen H L, Wu D, Zhao Q C, Wang Z H, Ge J W, Zhang W 2022 J. Alloys Compd. 902 163878
[39] Shu Y T, Zhang Y W, Wang S 2021 Acta Phys. Sin. 70 177301 (in Chinese) [舒衍涛, 张有为, 王顺 2021 物理学报 70 177301]
[40] Hanbicki A T, Currie M, Kioseoglou G, Friedman A L, Jonker B T 2015 Solid State Commun. 203 16
[41] Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707
[42] Xu Y H, Liu J Q 2016 Small 12 1400
[43] Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595
[44] Liu Y, Huang Y, Duan X F 2019 Nature 567 323
[45] Gao S, Wang Z Q, Wang H D, Meng F X, Wang P F, Chen S, Zeng Y H, Zhao J L, Hu H G, Cao R, Xu Z Q, Guo Z N, Zhang H 2021 Adv. Mater. Interfaces 8 2001730
[46] Shin G H, Park J, Lee K J, Lee G B, Jeon H B, Choi Y K, Yu K, Choi S Y 2019 ACS Appl. Mater. Interfaces 11 7626
[47] Gong M G, Liu Q F, Cook B, Kattel B, Wang T, Chan W L, Ewing D, Casper M, Stramel A, Wu J Z 2017 ACS Nano 11 4114
[48] Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123
[49] Zhou J S, Yang J H, Wei Z M 2020 J. Semicond. 41 080401
[50] Wang P Q, Jia C C, Huang Y, Duan X F 2021 Matter 4 552
[51] Mukherjee S, Bhattacharya D, Patra S, Paul S, Mitra R K, Mahadevan P, Pal A N, Ray S K 2022 ACS Appl. Mater. Interfaces 14 5775
[52] Dong T, Simões J, Yang Z C 2020 Adv. Mater. Interfaces 7 1901657
[53] Zhang L, Wang B, Zhou Y H, Wang C, Chen X L, Zhang H 2020 Adv. Opt. Mater. 8 2000045
[54] Rudenko A N, Yuan S, Katsnelson M I 2015 Phys. Rev. B 92 085419
[55] Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F N 2017 Nat. Commun. 8 1672
[56] Long M S, Gao A Y, Wang P, Xia H, Ott C, Pan C, Fu Y J, Liu E, Chen X S, Lu W, Nilges T, Xu J, Wang X M, Hu W D, Miao F 2017 Sci. Adv. 3 e1700589
[57] Xu M, Gu Y Q, Peng R M, Youngblood N, Li M 2017 Appl. Phys. B 123 130
[58] Suess R J, Leong E, Garrett J L, Zhou T, Salem R, Munday J N, Murphy T E, Mittendorff M 2016 2D Mater. 3 041006
[59] Shen C F, Liu Y H, Wu J B, Xu C, Cui D Z, Li Z, Liu Q Z, Li Y R, Wang Y X, Cao X, Kumazoe H, Shimojo F, Krishnamoorthy A, Kalia R K, Nakano A, Vashishta P D, Amer M R, Abbas A N, Wang H, Wu W Z, Zhou C W 2020 ACS Nano 14 303
[60] Amani M, Tan C L, Zhang G, Zhao C S, Bullock J, Song X H, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M, Javey A 2018 ACS Nano 12 7253
[61] Niu Y Y, Wu D, Su Y Q, Zhu H, Wang B, Wang Y X, Zhao Z R, Zheng P, Niu J S, Zhou H B, Wei J, Wang N L 2018 2D Mater. 5 011008
[62] Liang Q J, Wang Q X, Zhang Q, Wei J X, Lim S X, Zhu R, Hu J X, Wei W, Lee C, Sow C, Zhang W J, Wee A T S 2019 Adv. Mater. 31 1807609
[63] Feng W, Gao F, Hu Y X, Dai M J, Li H, Wang L F, Hu P A 2018 Nanotechnology 29 445205
[64] Zhang B, Liu Y J, Hu B, Guo F H, Zhang M C, Li S Q, Yu W Z, Hao L Z 2024 2D Mater. 11 025024
[65] Yan B H, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
[66] Kou L Z, Ma Y D, Sun Z, Heine T, Chen C F 2017 The Journal of Physical Chemistry Letters 8 1905
[67] Yang M, Zhou H X, Wang J 2022 Mater. Today Commun. 33 104190
[68] Yu H H, Zeng H R, Zhang Y Z, Liu Y H, ShangGuan W, Zhang X K, Zhang Z, Zhang Y 2025 Adv. Funct. Mater. 35 2412913
[69] Sharma A, Srivastava A K, Senguttuvan T D, Husale S 2017 Sci. Rep. 7 17911
[70] Jiang T, Zang Y Y, Sun H H, Zheng X, Liu Y, Gong Y, Fang L, Cheng X A, He K 2017 Adv. Opt. Mater. 5 1600727
[71] Li Y, Yu W Z, Zhang K, Cui N, Yun T H, Xia X, Jiang Y, Zhang G Y, Mu H R, Lin S H 2024 Mater. Horiz. 11 2572
[72] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273
[73] Dong Z, Yu W Z, Zhang L B, Yang L, Huang L Y, Zhang Y, Ren Z Q, Mu H R, Chen C, Zhang J R, Li J, Wang L, Zhang K 2023 InfoMat 5 e12403
[74] Yang Q, Wang X M, He Z H, Chen Y J, Li S W, Chen H J, Wu S X 2023 Adv. Sci. 10 2205609
[75] Wang Q S, Wen Y, Yao F R, Huang Y, Wang Z X, Li M L, Zhan X Y, Xu K, Wang F M, Wang F, Li J, Liu K H, Jiang C, Liu F Q, He J 2015 Small 11 5388
[76] Gu S H, Ding K, Pan J, Shao Z B, Mao J, Zhang X J, Jie J S 2017 J. Mater. Chem. A 5 11171
[77] Yao J D, Shao J M, Wang Y X, Zhao Z R, Yang G W 2015 Nanoscale 7 12535
[78] Zhang X C, Liu X C, Zhang C Y, Peng S L, Zhou H X, He L, Gou J, Wang X R, Wang J 2022 ACS Nano 16 4851
[79] Xi T R, Jiang H T, Li J X, He Y C, Gu Y C, Fox C, Primeau L, Mao Y L, Rollins J, Taniguchi T, Watanabe K, van der Weide D, Rhodes D, Zhang Y, Wang Y, Xiao J 2025 Nat. Electron. 8 578
[80] He Y, Yang L, Hu Z, Zhang L B, Pan X K, Wei Y, Guo S G, Lv X Y, Jiang M J, Han L, Wang D, Lan S Q, Sun X, Chen X S, Zhang K, Wang L 2024 Adv. Funct. Mater. 34 2311008
[81] Ye Q J, Lu J T, Yi H X, Zheng Z Q, Ma C R, Du C, Zou Y C, Yao J D, Yang G W 2022 Appl. Phys. Lett. 120 181104
[82] Kim E B, Akhtar M S, Shin H S, Ameen S, Nazeeruddin M K 2021 J. Photochem. Photobiol., C 48 100405
[83] Leng K, Abdelwahab I, Verzhbitskiy I, Telychko M, Chu L Q, Fu W, Chi X, Guo N, Chen Z H, Chen Z X, Zhang C, Xu Q H, Lu J, Chhowalla M, Eda G, Loh K P 2018 Nat. Mater. 17 908
[84] Wang K, Wu C C, Yang D, Jiang Y Y, Priya S 2018 ACS Nano 12 4919
[85] Zha Y F, Wang Y, Sheng Y H, Zhang X W, Shen X Y, Xing F J, Liu C H, Di Y S, Cheng Y C, Gan Z X 2022 Appl. Phys. Lett. 121 191904
[86] Liu Y, Wu C J, Guan X N, Lu P F, Chen W, Zhao F Y, Gu C J, Shen X 2025 ACS Appl. Electron. Mater. 7 2128
[87] Wei S L, Wang F, Zou X M, Wang L M, Liu C, Liu X Q, Hu W D, Fan Z Y, Ho J C, Liao L 2020 Adv. Mater. 32 1907527
[88] Li Z Q, Hong E L, Zhang X Y, Deng M, Fang X S 2022 The Journal of Physical Chemistry Letters 13 1215
[89] Xue H, Wang Y D, Dai Y Y, Kim W, Jussila H, Qi M, Susoma J, Ren Z Y, Dai Q, Zhao J L, Halonen K, Lipsanen H, Wang X M, Gan X T, Sun Z P 2018 Adv. Funct. Mater. 28 1804388
[90] Ahn J, Kyhm J H, Kang H K, Kwon N, Kim H K, Park S, Hwang D K 2021 ACS Photonics 8 2650
[91] Tsai M Y, Tsai T H, Gandhi A C, Lu H L, Li J X, Chen P L, Chen K W, Chen S Z, Chen C H, Liu C H, Lin Y F, Chiu P W 2023 ACS Nano 17 25037
[92] Polumati G, Kolli C S R, Flores M, Kumar A, Sanghvi A, Bugallo A D L, Sahatiya P 2024 ACS Appl. Mater. Interfaces 16 19261
[93] Fu S L, Liu X H, Man J X, Ou Q H, Zheng X L, Liu Z Y, Zhu T, Wang H E 2024 J. Mater. Chem. C 12 3353
[94] Jain S K, Low M X, Taylor P D, Tawfik S A, Spencer M J S, Kuriakose S, Arash A, Xu C L, Sriram S, Gupta G, Bhaskaran M, Walia S 2021 ACS Appl. Electron. Mater. 3 2407
[95] Jia Y F, Wei X, Zhang Z H, Liu J, Tian Y, Zhang Y, Guo T T, Fan J B, Ni L, Luan L J, Duan L 2021 CrystEngComm 23 1033
[96] Wu E P, Wu D, Jia C, Wang Y G, Yuan H Y, Zeng L H, Xu T T, Shi Z F, Tian Y T, Li X J 2019 ACS Photonics 6 565
[97] Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301 (in Chinese) [吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301]
[98] Jiang J, Xu T, Lu J P, Sun L T, Ni Z H 2019 Research 2019 4641739
[99] Song J M, Zheng T, Wei X, Zhao X W, Cui Y Y, Sun C D, Zhang Y, Wei Z Y, Zhao W W, Lu J P, Ni Z H 2024 ACS Appl. Nano Mater. 7 1598
[100] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119
[101] Zhou N, Li H R, Li X B, Dang Z W, Sun Z D, Deng S J, Li J H, Xie Y, Xu H, Xia F F, Zhai T Y 2024 Small Struct. 5 2400062
[102] Sun L J, Wang S L, Ma C, Wei L M, Tao X T, Wang S P 2024 ACS Appl. Opt. Mater. 2 679
[103] Peng L S, Zheng T, Wu Z T, Zheng L, Zhang Y 2025 J. Alloys Compd. 1011 178338
[104] Li L, Wu Q Q, Wang C L, Cai Z Y, Lin L L, Gu X F, Ostrikov K K, Nan H Y, Xiao S Q 2024 ACS Photonics 11 2615
[105] Alamri M, Gong M G, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390
[106] Zhang J, Zhang X L, Li J, Ma Z Y, Leng B, Xia Q X, Shen L H, Song Y D, Fu Z W, Feng S Y, Feng L Z, Liu Z T, Yuldashev S, Jiang X, Liu B D 2022 Opt. Mater. 124 111997
[107] Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J 2016 ACS Photonics 3 2515
[108] Jiang F Q, Shi M D, Zhou J, Bu Y, Ao J P, Chen X S 2021 Adv. Photonics Res. 2 2000187
[109] Zhang Y, Li Y N, You Q, Sun J Y, Li K, Hong H, Kong L B, Zhu M Q, Deng T, Liu Z W 2023 Nanoscale 15 1402
[110] Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557
[111] Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330
[112] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592
[113] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104
[114] Sahatiya P, Solomon Jones S, Thanga Gomathi P, Badhulika S 2017 2D Mater. 4 025053
[115] Wang H, Dong C B, Gui Y L, Ye J, Altaleb S, Thomaschewski M, Movahhed Nouri B, Patil C, Dalir H, Sorger V J 2023 Nanomaterials 13 1973
[116] Lu D L, Chen Y, Kong L, Luo C B, Lu Z Y, Tao Q Y, Song W J, Ma L K, Li Z W, Li W Y, Liu L T, Li Q Y, Yang X D, Li J, Li J, Duan X D, Liao L, Liu Y 2022 Small 18 2107104
计量
- 文章访问数: 12
- PDF下载量: 1
- 被引次数: 0