搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力调控材料光电响应特性研究进展

程鹏 叶婷婷 潘孝美 薛二巧 姚德元 丁俊峰

引用本文:
Citation:

压力调控材料光电响应特性研究进展

程鹏, 叶婷婷, 潘孝美, 薛二巧, 姚德元, 丁俊峰

Progress in the Study of Pressure-Modulated Photoelectric Properties of Materials

CHENG Peng, YE Tingting, PAN Xiaomei, XUE Erqiao, YAO Deyuan, DING Junfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光电子技术领域的快速发展对半导体材料在光电特性上提出了更高要求,推动了对更加高效、可控的调控手段的深入探索。高压技术作为一种“干净”的外场调控手段,能够有效调控材料晶体结构与电子态,激发新奇物理现象,实现性能的优化。近年来,高压技术在光电功能材料领域迅速崭露头角,为光电特性的优化提供了全新视角,展现出不俗的研究价值和应用潜力。本文概述了近年来二维过渡金属硫化物、金属与非金属卤化物等材料体系在高压条件下光电响应特性演化的研究进展。总结了高压对材料晶体结构、电子能带、光谱响应拓展、自驱动响应、极性反转等效应的影响规律,分析了结构与性能的内在关联,并探讨了高压调控所揭示的新机制和新效应。最后,针对当前压力调控光电特性领域存在的科学问题与技术瓶颈,提出了未来可能的研究方向与前景,以期为开发新型高性能光电器件提供理论基础和实验依据。
    The rapid development of optoelectronic technologies has raised increasingly demands on the photoelectric properties of semiconductor materials, thereby driving the exploration of more efficient and controllable modulation strategies. As a clean and effective external-field approach, high-pressure technology can precisely modulate the crystal structure and electronic states of materials. This modulation can induce novel phase transitions and physical effects, thereby enabling significant improvements in performance. In recent years, high-pressure technique has emerged as a powerful tool for optimizing photoelectric properties of semiconductor materials, providing new perspectives for performance enhancement and demonstrating significant research value and application potential.
    This review provides a comprehensive summary of recent progress in the study of pressure-induced evolution of photoelectric properties in various material systems, such as two-dimensional transition metal dichalcogenides, metal and non-metal halides, perovskites, and other representative semiconductors. These materials exhibit a wide variety of pressure-induced structural transformations, accompanied by photocurrent enhancement, broadband spectral response, selfpowered photoresponse, and polarity reversal. Furthermore, the intrinsic links between these structural evolutions and the corresponding photoelectric behaviors are systematically examined.
    Scientific issues and development bottlenecks in this area are also discussed. Despite notable advances, several challenges remain, including the insufficient understanding of intrinsic correlations between structure and photoelectric properties, the lack of comprehensive evaluation parameters. How to realize pressure-enhanced photoelectric properties for applications under ambient conditions is another key challenge. Addressing these issues will be essential for advancing both fundamental understanding and practical applications.
    Overall, pressure modulated photoelectric properties present both significant challenges and exciting opportunities, offering valuable guidance for the design of advanced optoelectronic materials and devices.
  • [1]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888

    [2]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247

    [3]

    Koepfli S M, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J 2023 Science 380 1169

    [4]

    Chetia A, Bera J, Betal A, Sahu S 2022 Mater. Today Commun. 30 103224

    [5]

    Wang H Y, Li Z X, Li D Y, Chen P, Pi L J, Zhou X, Zhai T Y 2021 Adv. Funct. Mater. 31 2103106

    [6]

    Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123

    [7]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927

    [8]

    Liu J, Xia F N, Xiao D, Garcia de Abajo F J, Sun D 2020 Nat. Mater. 19 830

    [9]

    Rao G F, Wang X P, Wang Y, Wangyang P H, Yan C Y, Chu J W, Xue L X, Gong C H, Huang J W, Xiong J, Li Y R 2019 InfoMat 1 272

    [10]

    Tian W, Liu D, Cao F R, Li L 2017 Adv. Opt. Mater. 5 1600468

    [11]

    Ezhilmaran B, Patra A, Benny S, M. R S, V. V A, Bhat S V, Rout C S 2021 J. Mater. Chem. C 9 6122

    [12]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [13]

    Cheng P, Wang Y F, Ye T T, Chu L Q, Yang J, Zeng H, Yao D Y, Pan X M, Zhang J, Jiang H C, Su F H, Ding J F 2022 Appl. Phys. Lett. 120 212104

    [14]

    Pan X M, Xin B J, Zeng H, Cheng P, Ye T T, Yao D Y, Xue E Q, Ding J F, Wang W H 2023 J. Phys. Chem. Lett. 14 3320

    [15]

    Pan X M, Xue E Q, Li W G, Pan W J, Yao D Y, Zhang X, Yin Y W, Cheng P, Liu Q J, Ding J F 2025 Phys. Rev. B 111 115104

    [16]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [17]

    Jiang S Q, Holtgrewe N, Lobanov S S, Su F H, Mahmood M F, McWilliams R S, Goncharov A F 2018 Nat. Commun. 9 2624

    [18]

    Cheng P, Ye T T, Zeng H, Ding J F 2020 AIP Adv. 10 045110

    [19]

    You Y, Li S S, Su T C, Hu M H, Hu Q, Wang J Z, Gao G J, Guo M M, Nie Y 2020 Acta Phys. Sin. 69 238101

    [20]

    Qin X L, Zhu X L, Cao J W, Wang H C, Zhang P 2021 Acta Phys. Sin. 70 146301

    [21]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401

    [22]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302

    [23]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005

    [24]

    Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G, Lü X J 2021 J. Am. Chem. Soc. 143 2545

    [25]

    Shi Y, Zhou Y, Ma Z W, Xiao G J, Wang K, Zou B 2020 J. Mater. Chem. C 8 12755

    [26]

    Attique S, Ali N, Imran T, Rauf S, Khesro A, Ali S, Wang W J, Khatoon R, Abbas A, Ullah khan E, Yang S K, Wu H Z 2022 Sol. Energy 239 198

    [27]

    Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B, Guo H Z 2020 Adv. Sci. 7 1902900

    [28]

    An C, Du X L, Chen X L, Zhou Y, Zhang M, Zhou Y H, Zhou J, Yang Z R 2023 Phys. Rev. B 107 134501

    [29]

    Qi M Y, Ye M Y, Ma S L, Feng J M, Du M Y, Huang H Y, Song H, Cui T 2024 J. Mater. Chem. C 12 12372

    [30]

    Shen Z W, Wu Z Y, Wang S J, Wang H C, Li H K, Song J, Gao G Y, Wang L, Tian Y J 2024 Chin. Phys. Lett. 41 117101

    [31]

    Shi Y Y, Wu M, Yue L, Wang K, Li Q J, Wu Y, Ye G L, Huang H J 2024 Appl. Phys. Lett. 124 094103

    [32]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 e2400216

    [33]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [35]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [36]

    Song X F, Guo Z X, Zhang Q C, Zhou P, Bao W Z, Zhang D W 2017 Small 13 1700098

    [37]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387

    [38]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388

    [39]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116

    [40]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731

    [41]

    Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J, Yang Z R 2018 Chin. Phys. B 27 066201

    [42]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202

    [43]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547

    [44]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904

    [45]

    Aji Suleiman A, Zhou X, Zhai T Y 2020 J. Phys. D: Appl. Phys. 54 013002

    [46]

    Cheng P, Ye T T, Yan J W, Zhang K, Yao D Y, Pan X M, Wang Y F, Xue E, Su F H, Zhang J, Ding J F 2023 Adv. Opt. Mater. 11 2300316

    [47]

    Li Z, Li Q, Li H, Tian F, Du M, Fang S, Liu R, Zhang L, Liu B 2022 Small Methods 6 2201044

    [48]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2025 Natl. Sci. Rev. 12 nwae419

    [49]

    Li Z L, Chen S X, Tian F Y, Fang S X, Li Q J, Du M Y, Yuan B, Kang L, Zhang L J, Liu B B 2024 Acta Mater. 278 120263

    [50]

    Xing S Y, Chen S X, Fang S X, Tian F Y, Li Z L, Jin X L, Li Q J, Liu B B 2024 Adv. Opt. Mater. 12 202401433

    [51]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2021 Adv. Funct. Mater. 32 2108636

    [52]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381

    [53]

    Fang Y Q, Kong L P, Wang R Q, Zhang Z, Li Z Y, Wu Y H, Bu K J, Liu X Q, Yan S, Hattori T, Li N N, Li K, Liu G, Huang F Q 2023 Mater. Today Phys. 34 101083

    [54]

    Li Z L, Gao D X, Chen S X, Yue L, Yuan B, Shen X D, Kang L, Li Q J, Liu B B 2025 J. Mater. Chem. A 13 9801

    [55]

    Zhan X H, Jiang X M, Lv P, Xu J, Li F J, Chen Z L, Liu X B 2022 Angew. Chem. Int. Ed. 61 e202205491

    [56]

    Yan H C, Ou T J, Jiao H, Wang T Y, Wang Q L, Liu C L, Liu X Z, Han Y H, Ma Y Z, Gao C X 2017 J. Phys. Chem. Lett. 8 2944

    [57]

    Zhang H F, Yang J Z, Li Q J, You W W, Mao Y L 2023 Appl. Phys. Lett. 123 021107

    [58]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105

    [59]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930

    [60]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663

    [61]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z, Liu B B 2022 Adv. Sci. 10 2205837

    [62]

    Yue L, Li Z L, Yu L C, Xu K B, Liu R, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Liu B B 2024 J. Am. Chem. Soc. 146 25245

    [63]

    Liu T B, Bu K J, Zhang Q, Zhang P J, Guo S H, Liang J Y, Wang B H, Zheng H Y, Wang Y G, Yang W G, Lü X J 2022 Materials 15 3845

    [64]

    Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T 2017 Adv. Mater. 29 1605148

    [65]

    Cheng P, Ye T, Yi M, Cheng W, Zhang L, Hong P, Sun C, Xie Y, Yao D, Pan X, Xue E, Zhang X, Shen C, Ding J 2025 Appl. Phys. Lett. 126 251902

    [66]

    Cheng P, Yao D Y, Yan J W, Ye T T, Liu H H, Zeng H, Pan X M, Zhang G Q, Ding J F 2023 Phys. Rev. Appl. 19 024048

    [67]

    Li Y Z, Yang X G, Lv C F, Qin J X, Zhang C, Zhang Z F, Chen X X, Zang J H, Lou Q, Dong L, Shan C X 2022 Carbon 199 453

    [68]

    Fang S X, Dong Q, Li Z L, Tian H, Liu T Y, Li R X, Jing X L, Yue L, Li C Y, Liu R, Li Q J, Liu B B 2023 J. Phys. Chem. C 127 8383

    [69]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2022 Mater. Res. Lett. 11 134

    [70]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019

    [71]

    Yue L, Cui D D, Tian F B, Liu S, Li Z L, Liu R, Yao Z, Li Y C, Yang D L, Li X D, Li Q J, Du Y, Liu B B 2024 Acta Mater. 263 119529

    [72]

    Zhang G H, Liu F L, Gu T T, Zhao Y S, Li N N, Yang W G, Feng S H 2017 Adv. Electron. Mater. 3 600498

    [73]

    Rahman S, Samanta S, Kuzmin A, Errandonea D, Saqib H, Brewe D L, Kim J, Lu J L, Wang L 2019 Adv. Sci. 6 1901132

    [74]

    Li C, Liu K, Peng S, Feng Q, Jiang D Q, Wen T, Xiao H, Yue B B, Wang Y G 2023 Chem. Mater. 35 1449

    [75]

    Li C, Liu K, Jiang D Q, Wen T, Chen E, Ma Y Y, Yue B B, Chu S Q, Wang Y G 2023 Chem. Mater. 35 4821

    [76]

    Li C Y, Liu R, Zhao T T, Li Z L, Yue L, Lin T, Zhang X T, Li Q J, Liu B B 2022 Appl. Phys. Lett. 121 042102

    [77]

    Ye M Y, Li Y, Tang R L, Liu S Y, Ma S L, Liu H Z, Tao Q, Yang B, Wang X, Yue H J, Zhu P W 2022 Nanoscale 14 2668

    [78]

    Wang L R, Wang K, Xiao G J, Zeng Q S, Zou B 2016 J. Phys. Chem. Lett. 7 5273

    [79]

    Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [80]

    Wang F, Tan M P, Li C, Niu C Y, Zhao X 2019 Org. Electron. 67 89

    [81]

    Morana M, Malavasi L 2021 Sol. RRL 5 2100550

    [82]

    Zhang W W, Tang G, Sahoo M P K, Liang Y T, Zhang Y J 2022 Phys. Rev. B 105 075150

    [83]

    Mączka M, Dybała F, Herman A P, Paraguassu W, Barros dos Santos A J, Kudrawiec R 2024 RSC Adv. 14 38514

    [84]

    Feng H C, Zhang G Z, Feng Z B, Li Q, Wang G Y, Li Y W, Fang Y Y, Liu C L 2024 Appl. Phys. Lett. 124 043902

  • [1] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能. 物理学报, doi: 10.7498/aps.74.20250613
    [2] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高. 物理学报, doi: 10.7498/aps.73.20240557
    [3] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变. 物理学报, doi: 10.7498/aps.71.20211511
    [4] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用. 物理学报, doi: 10.7498/aps.71.20212360
    [5] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变研究. 物理学报, doi: 10.7498/aps.70.20211511
    [6] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, doi: 10.7498/aps.69.20200289
    [7] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, doi: 10.7498/aps.68.20190204
    [8] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展. 物理学报, doi: 10.7498/aps.67.20172159
    [9] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, doi: 10.7498/aps.67.20181393
    [10] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, doi: 10.7498/aps.64.227802
    [11] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087103
    [12] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [13] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, doi: 10.7498/aps.61.017501
    [14] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, doi: 10.7498/aps.60.107203.1
    [15] 李晓兵, 赵祥永, 汪尧进, 王飞飞, 陈超, 罗豪甦. 由BaTiO3晶体结构相变时的介电特性研究其电场作用下的偶极子偏转路径. 物理学报, doi: 10.7498/aps.58.4225
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, doi: 10.7498/aps.55.5172
    [17] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, doi: 10.7498/aps.55.1453
    [18] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, doi: 10.7498/aps.53.3467
    [19] 胡林华, 戴松元, 王孔嘉. 溶胶-凝胶法制备的纳米TiO2结构相变及晶体生长动力学. 物理学报, doi: 10.7498/aps.52.2135
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, doi: 10.7498/aps.50.769
计量
  • 文章访问数:  224
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回