搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用

王碧涵 李冰 刘旭强 王毫 蒋升 林传龙 杨文革

引用本文:
Citation:

毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用

王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革

Millisecond time-resolved synchrotron radiation X-ray diffraction and high-pressure rapid compression device and its application

Wang Bi-Han, Li Bing, Liu Xu-Qiang, Wang Hao, Jiang Sheng, Lin Chuan-Long, Yang Wen-Ge
PDF
HTML
导出引用
  • 高压非平衡相变动力学过程依赖于温度、压强及加载速率, 这要求在不同时间尺度内实现快速加载/卸载并进行快速数据采集. 本文着重介绍了最近在上海同步辐射光源BL15U1线站设计和发展的时间分辨X射线衍射和快速动态加载金刚石对顶砧(dDAC)实验装置的最新进展. dDAC采用气膜驱动和压电陶瓷驱动两种快速加载方式, 在毫秒尺度内实现DAC样品腔压强从常压加压到300 GPa(20 μm金刚石台面)以上, 并获得了毫秒尺度的时间分辨衍射数据. 其中压电陶瓷驱动的dDAC采用新设计的单、双筒驱动方式, 具有加载压力大、压缩速率高等特点, 加载速率可达13 TPa/s. 在快速加压过程中, 可同时连续采集X射线衍射谱. 探测器采用Pilatus 3X 900 K, 帧频达500 Hz, 实现了2 ms时间分辨的X射线衍射测量. 毫秒时间分辨的X射线衍射和高压快速加载装置丰富了BL15U1线站的高压研究技术, 拓展了线站开展超高压实验、非平衡相变动力学等科学研究的能力.
    Non-equilibrium transition dynamics under high pressure depends on temperature, pressure and (de)compression rate. The studies require combination of time-resolved probe and rapid compression device on different time scales. Here we report the time-resolved X-ray diffraction (XRD) and dynamic diamond anvil cell (dDAC) system, which were recently developed at the BL15U1 beamline of Shanghai Synchrotron Radiation Facility (SSRF). There are two rapid loading methods for dDAC. One uses membrane control and the other is piezoelectric actuator driven dDAC. Both methods can dynamically compress the DAC sample chamber up to 300 GPa on millisecond scale (20 μm culet is used), and the time-resolved XRD data are obtained correspondingly. A new type of piezoelectric ceramic dDAC is designed with single-side drive or double-side drive, which allows us to realize extremely high pressure (above 300 GPa) with a fast compression rate of 13 TPa/s. During the rapid compression process, the X-ray diffraction spectra are collected continuously and simultaneously. The XRD detector is Pilatus 3X 900K, which has 2-ms resolution with 500 kHz frame rate. The millisecond time-resolved XRD and high pressure rapid compression system developed at BL15U1 of SSRF enrich the high-pressure experimental methods and enable the beamline to carry out ultra-high pressure experiments, non-equilibrium phase transition and relevant scientific researches.
      通信作者: 蒋升, jiangsheng@zjlab.org.cn ; 林传龙, chuanlong.lin@hpstar.ac.cn
    • 基金项目: 国家重点研发计划重点专项(批准号: 2017YFA0403401)、国家自然科学基金(批准号: 11974033, U1930401, 51527801, 51772184)和科学挑战专题(批准号: TZ2016001)资助的课题.
      Corresponding author: Jiang Sheng, jiangsheng@zjlab.org.cn ; Lin Chuan-Long, chuanlong.lin@hpstar.ac.cn
    • Funds: Project supported by the National Key R&D projects (Grant No. 2017YFA0403401), the National Natural Science Foundation of China (Grant Nos. 11974033, U1930401, 51527801, 51772184) and Science Challenge Topics (Grant No. TZ2016001).
    [1]

    丁迎春, 徐明, 潘洪哲, 沈益斌, 祝文军, 贺红亮 2007 物理学报 56 117Google Scholar

    Ding Y C, Xu M, Pang H Z, Shen Y B, Zhu W J, He H L 2007 Acta Phys. Sin. 56 117Google Scholar

    [2]

    Yamanaka T, Fukuda T, Mimaki J 2002 Phys. Chem. Miner. 29 633Google Scholar

    [3]

    Sui Y, Xu D, Zheng F, Su W 1996 J. Appl. Phys. 80 719Google Scholar

    [4]

    Yue S, Cheng L, Liao B, Hu M 2018 Phys. Chem. Chem. Phys. 20 27125Google Scholar

    [5]

    John S T, Li Z, Uehara K, Ma Y, Ahuja R 2004 Phys. Rev. B 69 132101Google Scholar

    [6]

    Nakashima M, Tabata K, Thamizhavel A, Kobayashi T C, Hedo M, Uwatoko Y, Shimizu K, Settai R, Ōnuki Y 2004 J. Phys. Condens. Matter 16 L255Google Scholar

    [7]

    Levien L, Prewitt C T 1981 Am. Min. 66 324

    [8]

    Abd-Elmeguid M M, Ni B, Khomskii D I, Pocha R, Johrendt D, Wang X, Syassen K 2004 Phys. Rev. Lett. 93 126403Google Scholar

    [9]

    Brazhkin V V, Lyapin A G, Stalgorova O V, Gromnitskaya E L, Popova S V, Tsiok O B 1997 J. Non. Crys. Solids 212 49Google Scholar

    [10]

    Ozoliņš V, Zunger A 1999 Phys. Rev. Lett. 82 767Google Scholar

    [11]

    Sterer E, Silvera I F 2006 Rev. Sci. Instrum. 77 115105Google Scholar

    [12]

    Schiferl D, Katz A I, Mills R L, Schmidt L C, Vanderborgh C, Skelton E F, Elam W T, Webb A W, QadriM S B, Schaefer M 1986 Physica B + C 139 897

    [13]

    Shu H, Zhang Y, Wang B, Yang W, Dong H, Tobase T, Ye J, Huang X, Fu S, Zhou Q, Sekine T 2020 Phys. Plasmas 27 030701Google Scholar

    [14]

    Smith J S, Sinogeikin S V, Lin C, Rod E, Bai L, Shen G 2015 Rev. Sci. Instrum. 86 072208Google Scholar

    [15]

    Sinogeikin S V, Smith J S, Rod E, Lin C, Kenney-Benson C, Shen G 2015 Rev. Sci. Instrum. 86 072209Google Scholar

    [16]

    Evans W J, Yoo C S, Lee G W, Cynn H, Lipp M J, Visbeck K 2007 Rev. Sci. Instrum. 78 073904Google Scholar

    [17]

    Jenei Z, Liermann H P, Husband R, Méndez A S J, Pennicard D, Marquardt H, O'Bannon1 E F, Pakhomova A, Konopkova Z, Glazyrin K, Wendt M, Wenz S, McBride E E, Morgenroth W, Winkler B, Rothkirch A, Hanfland M, Evans W J 2019 Rev. Sci. Instrum. 90 065114Google Scholar

    [18]

    Lin C, Liu X, Yong X, John S T, Smith J S, English N J, Wang B, Li M, Yang W, Mao H K 2020 P. Nation. Acad. Sci. 117 15437Google Scholar

    [19]

    Lin C, Liu X, Yang D, Li X, Smith J S, Wang B, Dong H, Li S, Yang W, John, S T 2020 Phys. Rev. Lett. 125 155702Google Scholar

    [20]

    Lin C, Tse J S 2021 J. Phys. Chem. Lett. 12 8024Google Scholar

    [21]

    Liermann H P, Damker H, Konôpková Z, Appel K, Schropp A, McWiliams S, Alexander G, Baehtz C 2016 Conceptual Design Report for Diamond Anvil Cell Setup (DAC) at the HED instrument of the European XFEL

    [22]

    Zhang L L, Yan S, Jiang S 2015 Nucl. Sci. Tech. 26 060101Google Scholar

    [23]

    Biwer C M, Quan A, Huston L Q, Sturtevant B T, Sweeney C M 2021 Rev. Sci. Instrum. 92 103901Google Scholar

    [24]

    Kumar M 1995 Phys. Condens. Matter 212 391Google Scholar

    [25]

    Anzellini S, Dewaele A, Occelli F, Loubeyre P, Mezouar M 2014 J. Appl. Phys. 115 043511Google Scholar

  • 图 1  BL15U1线站束线布局图. 其中IVU25为磁极周期长度25 mm真空波荡器; S1为白光狭缝; FM为聚焦/准直镜; DCM为双晶单色器; S2为水平次级狭缝; KB为KB聚焦镜; Sample为样品点

    Fig. 1.  Beam path layout of BL15U1. Where IVU25 is vacuum undulator with 25 mm period length; S1 is white beam slits; FM is toroidal focusing mirror; DCM is double crystal monochromator; S2 is horizontal secondary beam slits; KB is Kirkpatrick-Baez mirror; Sample is sample point.

    图 2  单、双气膜控制dDAC实验装置 (a)双气膜控制dDAC原理图, 标记1为气膜; 标记2为气膜连接管, 标记3为大垫片, 标记4为卸压顶针, 标记5为样品腔, 标记6为组装罐; (b)单气膜控制dDAC实物图, 左边为气膜, 右边为单气膜控制dDAC实物图, 标记1为气膜, 标记2为气膜连接管, 标记6为组装罐

    Fig. 2.  Single or double membrane controlled dDAC experimental device: (a) Schematic diagram of dual membrane controlled dDAC, mark 1 is gas membrane, mark 2 is gas membrane connecting pipe, mark 3 is large gasket, mark 4 is ejector pin, mark 5 is sample chamber, mark 6 is the assembly can; (b) the photo of single gas membrane control dDAC, the left is the gas membrane, and on the right is the photo of single gas membrane control dDAC, mark 1 is gas membrane, mark 2 is gas membrane connecting pipe, mark 6 is the assembly can.

    图 3  单、双压电陶瓷控制dDAC实验装置 (a)单压电陶瓷控制dDAC原理图, 标记1为实心圆柱压电陶瓷, 标记3为压电陶瓷顶丝, 标记4为卸压顶针, 标记5为样品腔, 标记6为组装罐; (b)双压电陶瓷控制dDAC原理图, 标记2为圆环压电陶瓷堆片, 标记7为连接钢板; (c)单压电陶瓷控制dDAC实物图; (d)双压电陶瓷控制dDAC实物图

    Fig. 3.  Single and double piezoelectric ceramic control dDAC experimental device: (a) Schematic diagram of single cylinder piezoelectric ceramic control dDAC, mark 1 is solid cylindrical piezoelectric ceramics, mark 3 is piezoelectric ceramic top wire, mark 4 is ejector pin, mark 5 is sample chamber, mark 6 is the assembly can; (b) Schematic diagram of double barrel piezoelectric ceramic control dDAC, mark 2 is ring piezoelectric ceramic stack; mark 7 is perfobond ribs; (c) the photo of single cylinder piezoelectric ceramic control dDAC; (d) the photo of double barrel piezoelectric ceramic control dDAC.

    图 4  气膜和压电陶瓷联合控制dDAC实验装置 (a)单气膜和单压电陶瓷联合控制dDAC实验装置实物图; (b)单气膜和双压电陶瓷联合控制dDAC实验装置实物图. 标记2为气膜连接管, 标记6为组装罐

    Fig. 4.  Experimental device for joint control of gas membrane and piezoelectric ceramics for dDAC: (a) The photo of the dDAC experimental device for combined control of single gas membrane and single tube piezoelectric ceramics; (b) the photo of the dDAC experimental device for combined control of single gas membrane and double piezoelectric ceramics. Mark 2 is gas membrane connecting pipe, mark 6 is the assembly can.

    图 5  毫秒时间分辨的高压同步辐射X射线衍射和快速加载装置布局示意图

    Fig. 5.  Schematic layout of millisecond time-resolved synchrotron radiation X-ray diffraction and dynamic compression device setup.

    图 6  动加载下Re的XRD (a) Re的XRD时间堆叠图; (b)压强随时间变化关系

    Fig. 6.  XRD of Re under dynamic compression: (a) XRD time stacking diagram of Re; (b) the relationship between pressure changes over time.

    图 7  动加载下Re的XRD (a) Re的XRD时间堆叠图; (b) Re的XRD积分曲线堆叠图; (c)压力变化随时间的关系

    Fig. 7.  XRD of Re under dynamic compression: (a) XRD time stacking diagram of Re; (b) stacked graph of Re XRD integral curve; (c) the relationship between pressure changes over time.

    图 8  压力变化随时间的关系

    Fig. 8.  The relationship between pressure changes over time.

    图 9  高压下金属Ge β-Sn相在卸压过程时的相变路径

    Fig. 9.  The phase change path of the metal Ge β-Sn phase during the pressure relief process under high pressure.

  • [1]

    丁迎春, 徐明, 潘洪哲, 沈益斌, 祝文军, 贺红亮 2007 物理学报 56 117Google Scholar

    Ding Y C, Xu M, Pang H Z, Shen Y B, Zhu W J, He H L 2007 Acta Phys. Sin. 56 117Google Scholar

    [2]

    Yamanaka T, Fukuda T, Mimaki J 2002 Phys. Chem. Miner. 29 633Google Scholar

    [3]

    Sui Y, Xu D, Zheng F, Su W 1996 J. Appl. Phys. 80 719Google Scholar

    [4]

    Yue S, Cheng L, Liao B, Hu M 2018 Phys. Chem. Chem. Phys. 20 27125Google Scholar

    [5]

    John S T, Li Z, Uehara K, Ma Y, Ahuja R 2004 Phys. Rev. B 69 132101Google Scholar

    [6]

    Nakashima M, Tabata K, Thamizhavel A, Kobayashi T C, Hedo M, Uwatoko Y, Shimizu K, Settai R, Ōnuki Y 2004 J. Phys. Condens. Matter 16 L255Google Scholar

    [7]

    Levien L, Prewitt C T 1981 Am. Min. 66 324

    [8]

    Abd-Elmeguid M M, Ni B, Khomskii D I, Pocha R, Johrendt D, Wang X, Syassen K 2004 Phys. Rev. Lett. 93 126403Google Scholar

    [9]

    Brazhkin V V, Lyapin A G, Stalgorova O V, Gromnitskaya E L, Popova S V, Tsiok O B 1997 J. Non. Crys. Solids 212 49Google Scholar

    [10]

    Ozoliņš V, Zunger A 1999 Phys. Rev. Lett. 82 767Google Scholar

    [11]

    Sterer E, Silvera I F 2006 Rev. Sci. Instrum. 77 115105Google Scholar

    [12]

    Schiferl D, Katz A I, Mills R L, Schmidt L C, Vanderborgh C, Skelton E F, Elam W T, Webb A W, QadriM S B, Schaefer M 1986 Physica B + C 139 897

    [13]

    Shu H, Zhang Y, Wang B, Yang W, Dong H, Tobase T, Ye J, Huang X, Fu S, Zhou Q, Sekine T 2020 Phys. Plasmas 27 030701Google Scholar

    [14]

    Smith J S, Sinogeikin S V, Lin C, Rod E, Bai L, Shen G 2015 Rev. Sci. Instrum. 86 072208Google Scholar

    [15]

    Sinogeikin S V, Smith J S, Rod E, Lin C, Kenney-Benson C, Shen G 2015 Rev. Sci. Instrum. 86 072209Google Scholar

    [16]

    Evans W J, Yoo C S, Lee G W, Cynn H, Lipp M J, Visbeck K 2007 Rev. Sci. Instrum. 78 073904Google Scholar

    [17]

    Jenei Z, Liermann H P, Husband R, Méndez A S J, Pennicard D, Marquardt H, O'Bannon1 E F, Pakhomova A, Konopkova Z, Glazyrin K, Wendt M, Wenz S, McBride E E, Morgenroth W, Winkler B, Rothkirch A, Hanfland M, Evans W J 2019 Rev. Sci. Instrum. 90 065114Google Scholar

    [18]

    Lin C, Liu X, Yong X, John S T, Smith J S, English N J, Wang B, Li M, Yang W, Mao H K 2020 P. Nation. Acad. Sci. 117 15437Google Scholar

    [19]

    Lin C, Liu X, Yang D, Li X, Smith J S, Wang B, Dong H, Li S, Yang W, John, S T 2020 Phys. Rev. Lett. 125 155702Google Scholar

    [20]

    Lin C, Tse J S 2021 J. Phys. Chem. Lett. 12 8024Google Scholar

    [21]

    Liermann H P, Damker H, Konôpková Z, Appel K, Schropp A, McWiliams S, Alexander G, Baehtz C 2016 Conceptual Design Report for Diamond Anvil Cell Setup (DAC) at the HED instrument of the European XFEL

    [22]

    Zhang L L, Yan S, Jiang S 2015 Nucl. Sci. Tech. 26 060101Google Scholar

    [23]

    Biwer C M, Quan A, Huston L Q, Sturtevant B T, Sweeney C M 2021 Rev. Sci. Instrum. 92 103901Google Scholar

    [24]

    Kumar M 1995 Phys. Condens. Matter 212 391Google Scholar

    [25]

    Anzellini S, Dewaele A, Occelli F, Loubeyre P, Mezouar M 2014 J. Appl. Phys. 115 043511Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变. 物理学报, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
    [3] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [4] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [5] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [8] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [10] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [11] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [12] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [13] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [14] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [15] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [16] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [17] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [18] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [19] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
计量
  • 文章访问数:  6345
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-01-25
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回