搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁绝缘体中磁振子的非平衡稳态输运性质

杨栋超 易立志 丁林杰 刘敏 朱丽娅 许云丽 何雄 沈顺清 潘礼庆 JohnQ. Xiao

引用本文:
Citation:

铁磁绝缘体中磁振子的非平衡稳态输运性质

杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao

Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators

Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao
PDF
HTML
导出引用
  • 玻色子体系中的非平衡输运过程研究是极具挑战性的工作. 磁振子是玻色子, 具有与电子等费米子截然不同的自旋输运行为. 本文以钇铁石榴石(YIG)铁磁绝缘体为研究对象, 聚焦影响稳态下YIG中磁振子非平衡输运过程的关键因素. 通过将具有非零化学势$ {\mu }_{{\mathrm{m}}} $的玻色-爱因斯坦统计函数引入到玻尔兹曼输运方程中, 获得了以$ \alpha $为幂次的输运方程严格解析表达式(当α($ =-{\mu }_{{\mathrm{m}}}/\left({k}_{{\mathrm{B}}}T\right) $)<1时). 结果显示, 当α$\ll1 $时, 我们得到了与以往研究不同的化学势$ {\mu }_{{\mathrm{m}}} $与非平衡粒子浓度$ \delta {n}_{{\mathrm{m}}} $之间的非线性关系$ \delta {n}_{{\mathrm{m}}}\propto -{\alpha }^{1/2}\propto -{(-{\mu }_{{\mathrm{m}}})}^{1/2} $; $ \alpha $较大时, 则还须考虑其高阶项. 正因这种非线性关系, 导致磁振子扩散方程显著不同于电子自旋扩散特性, 其由线性微分方程演变为更复杂的非线性微分方程. 本文重点研究了在两种极端温度梯度(即$ \nabla T \sim 1\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $$ {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $)下非平衡磁振子浓度$ \delta {n}_{{\mathrm{m}}} $和化学势$ {\mu }_{{\mathrm{m}}} $的空间分布, 它们分别对应于$ {\mu }_{{\mathrm{m}}} $的值约为$ -0.1\;{\text{μ}}{\mathrm{e}}{\mathrm{V}} $$ -6.2\;{\mathrm{m}}{\mathrm{e}}{\mathrm{V}} $, 均满足前提条件α < 1. 在远离平衡态的大温度梯度分布下, 本文理论计算与实验结果吻合很好. 这些理论研究结果将加深人们对铁磁绝缘体中磁振子非平衡输运行为的认识.
    Understanding nonequilibrium transport phenomena in bosonic systems is highly challenging. Magnons, as bosons, exhibit different transport behavior from fermionic electron spins. This study focuses on the key factors influencing the nonequilibrium transport of magnons in steady states within magnetic insulators by taking Y3Fe5O12 (YIG) for example. By incorporating the Bose-Einstein distribution function with a non-zero chemical potential $ {\mu }_{m} $ into the Boltzmann transport equation, analytical expressions for transport parameters in power of $ \alpha $ ($ =-{\mu }_{{\mathrm{m}}}/({k}_{{\mathrm{B}}}T) $) are obtained under the condition α<1. It is the biggest different from previous researches that our theory establishes a nonlinear relationship between the chemical potential and the nonequilibrium particle density $ \delta {n}_{{\mathrm{m}}}\propto -{\alpha }^{1/2}\propto $$ -{(-{\mu }_{{\mathrm{m}}})}^{1/2} $ for magnons under α$\ll 1 $. For a large chemical potential, higher-order terms of α must be taken into account. Owing to this nonlinear relationship, the magnon diffusion equation markedly differs from that governing electron spin,which evolves into more complex nonlinear differential equation. We specifically focus on the ferrimagnetic insulator YIG by making a comparison of the spatial distribution of the nonequilibrium magnon density $ \delta {n}_{m} $ and chemical potential $ {\mu }_{m} $ between two extreme temperature gradients, namely, $ \nabla T \sim 1\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $ and $ {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}}, $ which correspond to $ {\mu }_{{\mathrm{m}}} $ values on the order of $ -0.1\;{\text{μ}}{\mathrm{e}}{\mathrm{V}} $ and $ -6.2\;{\mathrm{m}}{\mathrm{e}}{\mathrm{V}} $, respectively, while still satisfying the prerequisite α < 1. Given the known temperature gradient distribution, the nonequilibrium magnon density $ \delta {n}_{{\mathrm{m}}} $ calculated based on our theory is in good agreement with the experimental result. Our theoretical and numerical findings greatly contribute to a profound understanding of the nonequilibrium magnon transport characteristics in magnetic insulators.
      通信作者: 潘礼庆, lpan@ctgu.edu.cn ; JohnQ. Xiao, jqx@udel.edu
    • 基金项目: 国家自然科学基金(批准号: 12274258)和美国国家科学基金(批准号: DMR1505592)资助的课题.
      Corresponding author: Pan Li-Qing, lpan@ctgu.edu.cn ; John Q. Xiao, jqx@udel.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274258) and the National Science Foundation of the USA (Grant No. DMR1505592).
    [1]

    Bauer G E W, Saitoh E, van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [2]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [3]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430Google Scholar

    [4]

    Uchida K, Xiao J, Adachi H, et al. 2010 Nat. Mater. 9 894Google Scholar

    [5]

    Maehrlein S F, Radu I, Maldonado P, et al. 2018 Sci. Adv. 4 eaar5164Google Scholar

    [6]

    Shi Z, Xi Q, Li J X, Li Y F, Aldosary M, Xu Y D, Zhou J, Zhou S M, Shi J 2021 Phys. Rev. Lett. 127 277203Google Scholar

    [7]

    Uchida K I, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [9]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [10]

    Jaworski C M, Myers R C, Johnston-Halperin E, Heremans J P 2012 Nature 487 210Google Scholar

    [11]

    Seki S, Ideue T, Kubota M, et al. 2015 Phys. Rev. Lett. 115 266601Google Scholar

    [12]

    Jiménez-Cavero P, Lucas I, Anadón A, et al. 2017 APL Mater. 5 026103Google Scholar

    [13]

    Li J, Shi Z, Ortiz V H, Aldosary M, Chen C, Aji V, Wei P, Shi J 2019 Phys. Rev. Lett. 122 217204Google Scholar

    [14]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 60402

    [15]

    Pirro P, Vasyuchka V I, Serga A A, Hillebrands B 2021 Nat. Rev. Mater. 6 1114Google Scholar

    [16]

    Chumak A V 2019 arXiv: 1901.08934.

    [17]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [18]

    Zhang S S L, Zhang S F 2012 Phys. Rev. Lett. 109 096603Google Scholar

    [19]

    Rezende S M, Rodríguez-Suárez R L, Cunha R O, et al. 2014 Phys. Rev. B 89 014416Google Scholar

    [20]

    Olsson K S, An K, Fiete G A, Zhou J S, Shi L, Li X Q 2020 Phys. Rev. X 10 021029

    [21]

    Demidov V E, Urazhdin S, Divinskiy B, et al. 2017 Nat. Commun. 8 1579Google Scholar

    [22]

    Du C, Sar T van der, Zhou T X, Upadhyaya P, Casola F, Zhang H, Onbasli M C, Ross C A, Walsworth R L, Tserkovnyak Y, Yacoby A 2017 Science 357 195Google Scholar

    [23]

    Robinson J E 1951 Phys. Rev. 83 678Google Scholar

    [24]

    Yi L Z, Yang D C, Liu M, Fu H H, Ding L J, Xu Y L, Zhang B B, Pan L Q, Xiao J Q 2020 Adv. Funct. Mater. 30 2004024Google Scholar

    [25]

    Princep A J, Ewings R A, Ward S, et al. 2017 Npj Quantum Mater. 2 63Google Scholar

    [26]

    Son P C van, Kempen H van, Wyder P 1987 Phys. Rev. Lett. 58 2271Google Scholar

    [27]

    Valet T, Fert A 1993 Phys. Rev. B 48 7099Google Scholar

    [28]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

  • 图 1  磁振子自旋塞贝克效应示意图, 铁磁绝缘体(MI)磁振子流的两个来源是温度梯度$ \nabla T $和化学势梯度$ \nabla \mu $, 磁振子流进入近邻的重金属层(HM), 由HM中逆自旋霍尔效应进行探测

    Fig. 1.  Schematic diagram of magnon spin Seebeck effect. The two sources of magnon current in ferromagnetic insulators (MI) are temperature gradient $ \nabla T $ and chemical potential gradient $ \nabla \mu $. Magnon current enters the neighboring heavy metal layer (HM) and is detected by the inverse spin Hall effect.

    图 2  非平衡粒子数$ {\delta n}_{{\mathrm{m}}} $随化学势$ {\mu }_{{\mathrm{m}}} $和$ \alpha $的变化规律

    Fig. 2.  The variation of nonequilibrium magnon density $ {\delta n}_{{\mathrm{m}}} $with chemical potential $ {\mu }_{{\mathrm{m}}} $ and $ \alpha $.

    图 3  非平衡磁振子流在非线性温度梯度$ \nabla T \sim {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $下的输运 (a) YIG薄膜上激光辐照光斑附近的温度分布和温度梯度, 数据取自文献[20]; (b)本文的理论结果与位置相关的非平衡磁振子浓度$ \delta {n}_{{\mathrm{m}}} $, 及其与实验数据的对比; (c)本文的理论结果与采用线性近似计算的化学势$ {\mu }_{{\mathrm{m}}} $的对比; (d) MI中的总磁振子流$ {J}_{{\mathrm{m}}} $由两个统计力驱动, 温度梯度$ \nabla T $和化学势$ \nabla {\mu }_{{\mathrm{m}}} $. $ {J}_{{\mathrm{m}}}^{\nabla \mu } $和$ {J}_{{\mathrm{m}}}^{\nabla T} $对总磁振子流$ {J}_{{\mathrm{m}}} $的贡献

    Fig. 3.  Out-of-equilibrium magnon transport under a nonlinear temperature gradient $ \nabla T \sim {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $: (a) Distribution of temperature and temperature gradient near the heating laser spot on the YIG film, data taken from[20]; (b) comparison between our theoretical results and the experimental data for position-dependent nonequilibrium magnon density $ \delta {n}_{{\mathrm{m}}} $; (c) comparison between our theoretical results and the calculated data of linear approximation for position-dependent chemical potential $ {\mu }_{{\mathrm{m}}} $; (d) total magnon current $ {J}_{{\mathrm{m}}} $ in MI driven by two statistical forces: temperature gradient $ \nabla T $ and chemical potential $ \nabla {\mu }_{{\mathrm{m}}}. $ Contribution of $ {J}_{{\mathrm{m}}}^{\nabla \mu } $and $ {J}_{{\mathrm{m}}}^{\nabla T} $ to the total magnon current $ {J}_{{\mathrm{m}}} $.

    图 4  MI中恒定温度梯度下的准平衡磁振子输运 (a), (b)恒定温度梯度下非平衡磁振子浓度$ \delta {n}_{{\mathrm{m}}} $和化学势$ {\mu }_{{\mathrm{m}}} $的数值结果, 插图化学势$ {\mu }_{{\mathrm{m}}} $空间分布示意图; (c), (d)不同的$ \nabla T $值下计算得到的样品中心处 $ \delta {n}_{{\mathrm{m}}}^{0} $和$ {\mu }_{{\mathrm{m}}}^{0} $的值

    Fig. 4.  Quasi-equilibrium magnon transport under a constant temperature gradient in MI: (a), (b) Numerical results for the nonequilibrium magnon density $ \delta {n}_{{\mathrm{m}}} $ and chemical potential $ {\mu }_{{\mathrm{m}}} $ at a constant temperature gradient. Inset is schematic diagram illustrating the spatial-dependent chemical potential $ {\mu }_{{\mathrm{m}}} $; (c), (d) calculated values of $ \delta {n}_{{\mathrm{m}}} $ and $ {\mu }_{{\mathrm{m}}} $ at the center of the sample for different values of $ \nabla T $.

  • [1]

    Bauer G E W, Saitoh E, van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [2]

    Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453Google Scholar

    [3]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430Google Scholar

    [4]

    Uchida K, Xiao J, Adachi H, et al. 2010 Nat. Mater. 9 894Google Scholar

    [5]

    Maehrlein S F, Radu I, Maldonado P, et al. 2018 Sci. Adv. 4 eaar5164Google Scholar

    [6]

    Shi Z, Xi Q, Li J X, Li Y F, Aldosary M, Xu Y D, Zhou J, Zhou S M, Shi J 2021 Phys. Rev. Lett. 127 277203Google Scholar

    [7]

    Uchida K I, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [9]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [10]

    Jaworski C M, Myers R C, Johnston-Halperin E, Heremans J P 2012 Nature 487 210Google Scholar

    [11]

    Seki S, Ideue T, Kubota M, et al. 2015 Phys. Rev. Lett. 115 266601Google Scholar

    [12]

    Jiménez-Cavero P, Lucas I, Anadón A, et al. 2017 APL Mater. 5 026103Google Scholar

    [13]

    Li J, Shi Z, Ortiz V H, Aldosary M, Chen C, Aji V, Wei P, Shi J 2019 Phys. Rev. Lett. 122 217204Google Scholar

    [14]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 60402

    [15]

    Pirro P, Vasyuchka V I, Serga A A, Hillebrands B 2021 Nat. Rev. Mater. 6 1114Google Scholar

    [16]

    Chumak A V 2019 arXiv: 1901.08934.

    [17]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [18]

    Zhang S S L, Zhang S F 2012 Phys. Rev. Lett. 109 096603Google Scholar

    [19]

    Rezende S M, Rodríguez-Suárez R L, Cunha R O, et al. 2014 Phys. Rev. B 89 014416Google Scholar

    [20]

    Olsson K S, An K, Fiete G A, Zhou J S, Shi L, Li X Q 2020 Phys. Rev. X 10 021029

    [21]

    Demidov V E, Urazhdin S, Divinskiy B, et al. 2017 Nat. Commun. 8 1579Google Scholar

    [22]

    Du C, Sar T van der, Zhou T X, Upadhyaya P, Casola F, Zhang H, Onbasli M C, Ross C A, Walsworth R L, Tserkovnyak Y, Yacoby A 2017 Science 357 195Google Scholar

    [23]

    Robinson J E 1951 Phys. Rev. 83 678Google Scholar

    [24]

    Yi L Z, Yang D C, Liu M, Fu H H, Ding L J, Xu Y L, Zhang B B, Pan L Q, Xiao J Q 2020 Adv. Funct. Mater. 30 2004024Google Scholar

    [25]

    Princep A J, Ewings R A, Ward S, et al. 2017 Npj Quantum Mater. 2 63Google Scholar

    [26]

    Son P C van, Kempen H van, Wyder P 1987 Phys. Rev. Lett. 58 2271Google Scholar

    [27]

    Valet T, Fert A 1993 Phys. Rev. B 48 7099Google Scholar

    [28]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

  • [1] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, 2025, 74(3): 030701. doi: 10.7498/aps.74.20241538
    [2] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响. 物理学报, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [3] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [4] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [5] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [6] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [7] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [8] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究. 物理学报, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [9] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用. 物理学报, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [10] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [11] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [12] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [13] 韩金良, 孙立忠, 陈效双, 陆卫, 钟建新. Au在Hg1-xCdxTe材料中p型掺杂的第一性原理研究. 物理学报, 2010, 59(2): 1202-1211. doi: 10.7498/aps.59.1202
    [14] 成泰民, 罗宏超, 李 林. 有限温度下光频支声子-磁振子相互作用对磁振子寿命的影响. 物理学报, 2008, 57(10): 6531-6539. doi: 10.7498/aps.57.6531
    [15] 成泰民, 鲜于泽, 杜 安, 邹君鼎. 低温下二维绝缘铁磁体的磁振子软化. 物理学报, 2005, 54(5): 2239-2246. doi: 10.7498/aps.54.2239
    [16] 成泰民, 鲜于泽, 杜 安. 低温下二维绝缘铁磁体的磁振子寿命. 物理学报, 2005, 54(11): 5314-5323. doi: 10.7498/aps.54.5314
    [17] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析. 物理学报, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [18] 贺泽君, 龙家丽, 马国亮, 马余刚, 张家驹, 刘 波. 化学非平衡夸克-胶子物质中等质量双轻子的产生. 物理学报, 2003, 52(11): 2831-2835. doi: 10.7498/aps.52.2831
    [19] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [20] 曹治觉. 冷凝器滴状冷凝的动态描述及接触角的选择. 物理学报, 2002, 51(1): 25-30. doi: 10.7498/aps.51.25
计量
  • 文章访问数:  1806
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-17
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回