搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间碎片超高速撞击下太阳电池阵伏安特性

郑建东 周江 皮晓丽 邹晨 李一帆 徐坤博 龚自正 胡帼杰

引用本文:
Citation:

空间碎片超高速撞击下太阳电池阵伏安特性

郑建东, 周江, 皮晓丽, 邹晨, 李一帆, 徐坤博, 龚自正, 胡帼杰

Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun

Zheng Jian-Dong, Zhou Jiang, Pi Xiao-Li, Zou Chen, Li Yi-Fan, Xu Kun-Bo, Gong Zi-Zheng, Hu Guo-Jie
PDF
HTML
导出引用
  • 太阳电池阵是航天器的电力来源, 时常受到微流星体和空间碎片撞击而损伤, 导致太阳电池阵输出功率下降. 采用二级轻气炮对航天器太阳电池阵开展了空间碎片超高速撞击地面模拟试验, 研究了不同撞击速度、弹丸直径、撞击点位置工况下太阳电池阵伏安特性的衰减规律. 共进行了12次试验, 其中5次因弹托撞击试件而无效, 7次试验数据有效. 试验结果显示, 弹丸的直径和撞击速度、撞击位置三者均对伏安特性影响较大, 地面模拟试验与在轨飞行试验产生的损伤形貌符合良好. 通过数据分析了电池阵失效面积与剥落区面积、穿孔面积、弹丸动能、撞击位置四者之间的关系. 研究发现, 电池阵失效面积与剥落区面积两者之比介于7—37, 电池阵失效面积与穿孔面积两者之比介于50—150. 撞击在电池片中心区域, 失效面积明显高于撞击在电池片边缘或者连接处. 电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与动能E ($ E=\mathrm{\pi }\rho {d}^{3}{v}^{2}/12 $)的立方根比较吻合. 为了建立功率损失面积与弹丸直径和撞击速度的准确方程, 首先假设三者存在幂指数关系, 再通过数据拟合方法求解待定系数, 最终建立了适用于国内太阳电池阵的功率损失$ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}} $方程和$ \Delta {S}_{\mathrm{S}\mathrm{A}} $方程. 当撞击在电池片中心区域$ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}= $$ 0.047d{v}^{2/3} $时, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=260d{v}^{2/3} $. 当撞击在电池片边缘或者连接处$ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}=0.033d{v}^{2/3} $时, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=180d{v}^{2/3} $. 方程预测偏差在 ±13.3%以内, 平均偏差为7.6%. 该方程可用于描述在0°撞击角条件下电池阵功率损失或失效面积两者与弹丸的直径、撞击速度、撞击位置的函数关系. 本文的研究方法对我国航天器太阳帆板超高速撞击环境下性能退化评估有借鉴意义, 所建立的功率损失方程和失效面积方程, 能够预测空间碎片造成的太阳电池阵的功率下降规律和失效面积规律, 对我国航天工程实践具有重要的工程应用价值.
    Solar array is a power source of spacecraft, which is often damaged by the impact of micrometeoroids and space debris, resulting in the decrease of output power of solar array. The degradation law of volt-ampere characteristic for spacecraft solar arrays under orbital debris hypervelocity impact is investigated by using a two-stage light gas gun. The volt-ampere characteristics of the solar arrays under different impact velocities, projectile diameters and impact positions are studied. A total of 12 shots are carried out, of which 5 shots are invalid due to the impact of the projectile carrier on the specimen, and 7 shots are valid. The experimental results show that the diameter, impact velocity, and impact position of the projectile all have a great influence on the volt-ampere characteristics, and the damage morphology generated by the ground simulation test is in line with the in-orbit flight test results. The relationship between the failure area of the solar arrays and the area of the spalling area, the perforation area, the kinetic energy of the projectile as well as the impact position are analyzed. It is found that the ratio of failure area to peeling area is between 7 and 37, and the ratio of failure area to perforation area is between 50 and 150. The failure area in the center of the solar cell is significantly larger than that on the edge or at the connection of the solar cell. Failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and the cube root of kinetic energy E ($ E=\mathrm{\pi }\rho {d}^{3}{v}^{2}/12 $) is consistent. In order to establish the accurate equation of power loss area with projectile diameter and impact velocity, in this paper it is assumed that there is a power exponential relationship among them, and then solve the undetermined coefficient by the data fitting method. Finally, we establish the power loss $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ equation and failure area $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ equation suitable for domestic solar array. The equation will be $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}=0.047d{v}^{2/3} $, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=260d{v}^{2/3} $ when the impact occurs in the center of the cell, and $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}=0.033d{v}^{2/3} $, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=180d{v}^{2/3} $ when the impact occurs on the edge or at the connection of the solar cell. The prediction error of the equation is in a range of 13.3%, and the average deviation is 7.6%. This equation can be used to describe the function relationship between the power loss or failure area of the solar arrays and the diameter, impact velocity and impact position of the projectile under the condition of 0° impact angle. The research method in this paper can be used as a reference for the performance degradation assessment of Chinese spacecraft solar panels under the hypervelocity impact of orbital debris, the established power loss equation and failure area equation can predict the law of power decline and failure area of solar array caused by space debris, and the results have important application value for Chinese aerospace engineering.
      通信作者: 郑建东, 462840102@qq.com
    • 基金项目: 国家国防科工局空间碎片专项(批准号: KJSP06209)资助的课题
      Corresponding author: Zheng Jian-Dong, 462840102@qq.com
    • Funds: Project supported by the Specialized Research Program for the Protection against Space Debris of China (Grant No. KJSP06209)
    [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R. A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A M, Mandeville J C, Kearsley A T, Ludwig H 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S. F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 Hypervelocity Impact Testing of Space Station Freedom Solar Cell (NASA Center for AeroSpace Information) Report No. NASA-TM-106509

    [10]

    Burt R R, Christiansen E L 2001 Hubble Space Telescope Solar Array Hypervelocity Impact Tests (NASA Johnson Space Center: The Orbital Debris Quarterly News) p2

    [11]

    Burt R R, Christiansen E L 2001 SM Solar Array and SM Cylinder Shield (Zone 10) HVI Tests (NASA Johnson Space Center) Report No. JSC-29485

    [12]

    Herbert M K 1999 Int. J. Impact Engin. 23 377Google Scholar

    [13]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [14]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [15]

    Harano T, Machida Y, Fukushige S, Koura, T Hosoda, S Cho, M Akahoshi, Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [16]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [17]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J g, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [18]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [19]

    Tang E L, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech 51 337Google Scholar

    [20]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [21]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang S F, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

    [22]

    郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕 2019 物理学报 68 220201Google Scholar

    Zheng J D, Niu J C, Zhong H X, Gong Z Z, Cao Y 2019 Acta Phys. Sin. 68 220201Google Scholar

  • 图 1  太阳电池阵组件试件

    Fig. 1.  Experimental speicmen: Solar array cells and carbon fiber honeycomb plate.

    图 2  试验参数

    Fig. 2.  Test parameters.

    图 3  试件(a) No.1和(b) No.12试验前的伏安特性曲线

    Fig. 3.  Volt-ampere characteristic curve of (a) No.1 and (b) No.12 solar arrays before test

    图 4  试件No.1试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 4.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.1 solar arrays.

    图 5  试件No.5试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 5.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.5 solar arrays.

    图 6  试件No.6试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 6.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.6 solar arrays.

    图 7  试件No.7试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 7.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.7 solar arrays.

    图 8  试件No.8试验后的(a)损伤形貌和(b)伏安特性曲线(因红色圆圈内受到弹托撞击较大, 损失一定功率, 去除弹托影响, 最大输出功率由1.37 W, 修正为1.39 W)

    Fig. 8.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.8 solar arrays (The maximum output power is revised from 1.37 W to 1.39 W to reduce the effect from sabot impact, since the power in the red cycle has lost caused by sabot impact).

    图 9  试件No.11试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 9.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.11 solar arrays.

    图 10  试件No.12试验后的(a)损伤形貌和(b)伏安特性曲线

    Fig. 10.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.12 solar arrays.

    图 11  (a)穿孔区域与(b)剥落区域边界(No.1)

    Fig. 11.  Measured parameters of (a) perforation hole area and (b) conchoidal area (No.1)

    图 12  哈勃望远镜太阳电池阵电池面超高速撞击穿孔形貌[1,6]

    Fig. 12.  A front-back perforation of the solar arrays exposed on the Hubble space telescope caused by orbital debris impact[1,6].

    图 13  电池阵失效面积$ {\Delta S}_{\mathrm{S}\mathrm{A}} $与剥落区面积$ {S}_{\mathrm{c}} $的关系

    Fig. 13.  Relationship between failure area of solar array $ {\Delta S}_{\mathrm{S}\mathrm{A}} $ and conchoidal area $ {S}_{\mathrm{c}} $

    图 14  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与穿孔面积$ {S}_{\mathrm{h}} $的关系

    Fig. 14.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and hole area $ {S}_{\mathrm{h}} $.

    图 15  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与弹丸动能E的关系

    Fig. 15.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and kinetic energy of projectile E

    图 16  电池阵功率损失面积与试验数据的关系

    Fig. 16.  Relationship between power loss area of solar array and test data.

    图 17  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与试验数据的关系

    Fig. 17.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and test data.

    表 1  试验结果

    Table 1.  Test result

    试验编号测试序号弹丸直径
    d/mm
    弹丸速度
    v/(km·s–1)
    穿孔面积Sh/mm2剥落面积Sc/mm2试验前最大输出
    功率$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{0} $/W
    试验后最大输出
    功率$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{1} $/W
    失效面积SSA/mm2撞击点
    位置
    No.1511-ZJD-1-83.043.2112.0252.171.801.531482A
    No.5511-ZJD-1-55.004.1031.24125.681.791.163478A
    No.6511-ZJD-1-75.005.2434.97150.221.821.113855A
    No.7511-ZJD-1-64.026.5827.01107.511.821.113855A
    No.8511-ZJD-1-45.003.2531.88288.021.801.39*2251B
    No.11511-ZJD-2-24.045.1324.49261.872.121.771872C
    No.12511-ZJD-2-15.003.2137.35129.282.101.731998C
    注: *为修正后数据; 由于穿孔边缘受到微量纤维遮挡, 穿孔面积为显微镜测量值基础上, 加上1%—3%的修正量.
    下载: 导出CSV

    表 2  功率损失方程的精度

    Table 2.  Accuracy of power loss equation

    试件编号156781112
    偏差–13.2%+4.7%+0.1%+7.0%+13.3%–11.7%+3.2%
    下载: 导出CSV
  • [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R. A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A M, Mandeville J C, Kearsley A T, Ludwig H 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S. F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 Hypervelocity Impact Testing of Space Station Freedom Solar Cell (NASA Center for AeroSpace Information) Report No. NASA-TM-106509

    [10]

    Burt R R, Christiansen E L 2001 Hubble Space Telescope Solar Array Hypervelocity Impact Tests (NASA Johnson Space Center: The Orbital Debris Quarterly News) p2

    [11]

    Burt R R, Christiansen E L 2001 SM Solar Array and SM Cylinder Shield (Zone 10) HVI Tests (NASA Johnson Space Center) Report No. JSC-29485

    [12]

    Herbert M K 1999 Int. J. Impact Engin. 23 377Google Scholar

    [13]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [14]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [15]

    Harano T, Machida Y, Fukushige S, Koura, T Hosoda, S Cho, M Akahoshi, Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [16]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [17]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J g, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [18]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [19]

    Tang E L, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech 51 337Google Scholar

    [20]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [21]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang S F, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

    [22]

    郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕 2019 物理学报 68 220201Google Scholar

    Zheng J D, Niu J C, Zhong H X, Gong Z Z, Cao Y 2019 Acta Phys. Sin. 68 220201Google Scholar

  • [1] 王震, 赵志航, 付洋洋. 基于统一流体模型的微放电数值仿真研究. 物理学报, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [2] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [3] 殷茂淑, 杨广, 王训春, 范斌, 姜德鹏, 杨洪东. 空间太阳电池阵应变规律研究. 物理学报, 2021, 70(19): 198801. doi: 10.7498/aps.70.20210320
    [4] 郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕. 太阳电池阵二级轻气炮超高速撞击特性研究. 物理学报, 2019, 68(22): 220201. doi: 10.7498/aps.68.20191132
    [5] 侯明强, 龚自正, 徐坤博, 郑建东, 曹燕, 牛锦超. 密度梯度薄板超高速撞击特性的实验研究. 物理学报, 2014, 63(2): 024701. doi: 10.7498/aps.63.024701
    [6] 蔡明辉, 吴逢时, 李宏伟, 韩建伟. 空间微小碎片超高速撞击诱发的等离子体特性研究. 物理学报, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [7] 李宏伟, 韩建伟, 蔡明辉, 吴逢时. 微小空间碎片撞击诱发放电效应研究. 物理学报, 2013, 62(22): 229601. doi: 10.7498/aps.62.229601
    [8] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响. 物理学报, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [9] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [10] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究. 物理学报, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [11] 高著秀, 李宏伟, 蔡明辉, 刘丹秋, 黄建国, 韩建伟. 超高速空间微小碎片撞击充电材料诱发的放电. 物理学报, 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [12] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [13] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] 马松山, 朱佳, 徐慧, 郭锐. 碱基对组分、电极位能及界面耦合对DNA分子I-V特性的影响. 物理学报, 2010, 59(10): 7458-7462. doi: 10.7498/aps.59.7458
    [15] 李宏伟, 韩建伟, 黄建国, 蔡明辉, 李小银, 高著秀. 利用超高速撞击产生的等离子体测量微粒速度的方法研究. 物理学报, 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [16] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] 张燕, 顾彪, 王文春, 彭许文, 王德真. 常压He气和N2气均匀介质阻挡放电的伏安特性. 物理学报, 2009, 58(8): 5532-5538. doi: 10.7498/aps.58.5532
    [18] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银. 空间微小碎片对低轨道航天器太阳电池表面撞击损伤研究. 物理学报, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
    [19] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [20] 马 勇, 邹 斌, 李宗良, 王传奎, 罗 毅. 六元杂环分子电学特性的理论研究. 物理学报, 2006, 55(4): 1974-1978. doi: 10.7498/aps.55.1974
计量
  • 文章访问数:  4698
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-05-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回