搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压管板结构纳秒脉冲放电中时域X射线研究

侯兴民 章程 邱锦涛 顾建伟 王瑞雪 邵涛

引用本文:
Citation:

大气压管板结构纳秒脉冲放电中时域X射线研究

侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛

Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure

Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao
PDF
导出引用
  • 纳秒脉冲放电能在大气压下产生高电子能量、高功率密度的低温等离子体,由于经典放电理论无法很好地解释纳秒脉冲放电中的现象,近年来以高能逃逸电子为基础的纳秒脉冲气体放电理论受到广泛关注.纳秒脉冲放电会产生高能逃逸电子,伴随产生X射线,研究X射线的特性可以间接反映高能逃逸电子的特性.本文利用纳秒脉冲电源在大气压下激励空气放电,通过金刚石光导探测器测量放电产生的X射线,研究不同电极间隙、阳极厚度下和空间不同位置测量的X射线特性.实验结果表明,在大气压下纳秒脉冲放电能产生上升沿约1 ns,脉宽约2 ns的X射线脉冲,其产生时间与纳秒脉冲电压峰值对应,经计算探测到的X射线能量约为2.310-3 J.当增大电极间隙时,探测到的X射线能量减弱,因为增大电极间隙会减小电场强度和逃逸电子数,从而减少阳极的轫致辐射.电极间距大于50 mm后加速减弱,同时放电模式从弥散过渡到电晕.随着阳极厚度增加,阳极后方和放电腔侧面观察窗测得的X射线能量均有所减弱,在阳极后面探测的X射线能量减弱趋势更加明显,这说明X射线主要产生在阳极内表面,因此增加阳极厚度会使穿透阳极薄膜的X射线能量减少.
    Nanosecond-pulse discharge can produce low-temperature plasma with high electron energy and power density in atmospheric air, thus it has been widely used in the fields of biomedical science, surface treatment, chemical deposition, flow control, plasma combustion and gas diode. However, some phenomena in nanosecond-pulse discharge cannot be explained by traditional discharge theories (Townsend theory and streamer theory), thus the mechanism of pulsed gas discharge based on runaway breakdown of high-energy electrons has been proposed. Generally, the generation and propagation of runaway electrons are accompanied by the generation of X-ray. Therefore, the properties of X-ray can indirectly reveal the characteristics of high-energy runaway electrons in nanosecond-pulse discharges. In this paper, in order to explore the characteristics of runaway electrons and the mechanism of nanosecond-pulse discharge, the temporal properties of X-ray in nanosecond-pulse discharge are investigated. A nanosecond power supply VPG-30-200 (with peak voltage 0200 kV, rising time 1.2-1.6 ns, and full width at half maximum 3-5 ns) is used to produce nanosecond-pulse discharge. The discharge is generated in a tube-to-plane electrode at atmospheric pressure. Effects of the inter-electrode gap, anode thickness and position on the characteristics of X-ray are investigated by measuring the temporal X-ray via a diamond photoconductive device. The experimental results show that X-ray in nanosecond-pulse discharge has a rising time of 1 ns, a pulse width of about 2 ns and a calculated energy of about 2.310-3 J. The detected X-ray energy decreases with the increase of inter-electrode gap, because the longer discharge gap reduces the electric field and the number of runaway electrons, weakening the bremsstrahlung at the anode. When the inter-electrode gap is 50 mm, the discharge mode is converted from a diffuse into a corona, resulting in a rapid decrease in X-ray energy. Furthermore, both X-ray energies measured behind the anode and on the side of discharge chamber decrease as anode thickness increases. The X-ray energy measured on the side of the discharge chamber is one order of magnitude higher than that measured behind the anode, which is because the anode foil absorbs some X-rays when they cross the foil. In addition, the X-ray energy behind the anode significantly decreases with the increase of the thickness of anode aluminum foil. It indicates that the X-ray in nanosecond-pulse discharge mainly comes from the bremsstrahlung caused by the collision between the high-energy runaway electrons and inner surface of the anode foil. Therefore, increasing the thickness of the anode foil will reduce the X-ray energy across the anode film.
      Corresponding author: Zhang Cheng, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn ; Shao Tao, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51477164, 11611530681), and State Key Laboratory of Alternate Electrical Power System, China (Grant No. LAPS16013).
    [1]

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Volt. Eng. 42 685 (in Chinese) [邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685]

    [2]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学:物理学 力学 天文学 41 801]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 134703 (in Chinese) [李元, 穆海宝, 邓军波, 王曙鸿 2013 物理学报 62 134703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Korolev Y D, Mesyats G A 1998 Physics of Pulsed Breakdown in Gases (Ekaterinburg: URO-Press) pp161-162

    [6]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepove M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [7]

    Zhang C, Shao T, Long K H, Yu Y, Wang J, Zhang D D, Yan P, Zhou Y X 2010 IEEE Plasma Sci. 38 1517

    [8]

    Chen F, Huo Y J, He S F, Feng L C 2001 Chin. Phys. Lett. 18 228

    [9]

    Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R X, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511

    [10]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [11]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [12]

    Zhang C, Tarasenko V F, Gu J W, Baksht E K, Beloplotov D V, Burachenko A G, Yan P, Lomaev M I, Shao T 2016 Phys. Rev. Accel. Beams 19 030402

    [13]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [14]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [15]

    Kunhard E E, Tzeng Y 1988 Phys. Rev. A 38 1410

    [16]

    Babich L P 2005 Phys. -Usp. 48 1015

    [17]

    Vasilyak L M, Kostyuchenko S V, Kudryavtsev N N, Filyugin I V 1994 Phys. -Usp. 37 247

    [18]

    Raizer Y P, Allen J E 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp9-14

    [19]

    Gurevich A V, Zybin K P 2005 Phys. Today 58 37

    [20]

    Yakovlenko S I 2007 Proc. Prokhorov General Inst. 63 186

    [21]

    Noggle R C, Krider E P, Wayland J R 1968 J. Appl. Phys. 39 4746

    [22]

    Stankevich Y L, Kalinin V G 1968 Sov. Phys. Dokl. 12 1041

    [23]

    Shao T, Zhang C, Niu Z, Yan P 2011 Appl. Phys. Lett. 98 021503

    [24]

    Kochkin P, Köhn C, Ebert U, Deursen L V 2016 Plasma Sources Sci. Technol. 25 044002

    [25]

    Oreshkin E V, Barengolts S A, Chaikovsky S A, Oginov A V, Shpakov K V 2012 Phys. Plasmas 19 013108

    [26]

    Tarasenko V F, Lomaev M I, Beloplotov D V, Sorokin D A 2016 High Volt. 1 181

    [27]

    Tarasenko V F, Rybka D V 2016 High Volt. 1 43

    [28]

    Baksht E K, Burachenko A G, Erofeev M V, Tarasenko V F 2014 Plasma Phys. Rep. 40 404

    [29]

    Pan L S, Han S, Kania D R, Zhao S, Gan K K, Kagan H, Kass R, Malchow R, Morrow F, Palmer W F, White C, Kim S K, Sannes F, Schnetzer S, Stone R, Thomson G B, Sugimoto Y, Fry A, Kanda S, Olsen S, Franklin M, Ager J W, Pianetta P 1993 J. Appl. Phys. 74 1086

    [30]

    Spielman R B 1995 Rev. Sci. Instrum. 66 867

    [31]

    Gu J W, Zhang C, Wang R X, Yan P, Shao T 2016 Plasma Sci. Technol. 18 230

    [32]

    Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Chin. Phys. Lett. 31 085201

    [33]

    Zhang R, Luo H Y, Zou X B, Shi H T, Zhu X L, Zhao S, Wang X X, Yap S, Wong C S 2014 IEEE Trans. Plasma Sci. 42 3143

    [34]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [35]

    Wang X X 2012 High Volt. Eng. 38 1537 (in Chinese) [王新新 2012 高电压技术 38 1537]

    [36]

    Zou X B, Wang X X, Zhang G X, Han M, Luo C M 2006 Acta Phys. Sin. 55 1289 (in Chinese) [邹晓兵, 王新新, 张贵新, 韩旻, 罗承沐 2006 物理学报 55 1289]

    [37]

    Babich L P, Loiko T V, Tsukernab V A 1990 Sov. Phys. Usp. 33 521

    [38]

    Gurevich A V, Zybin K P 2001 Phys. -Usp. 44 1119

    [39]

    Nguyem C V, van Deursen A P J, van Heesch E J M, Winands G J J, Pemen A J M 2010 J. Phys. D: Appl. Phys. 43 025202

    [40]

    Zhang C, Tarasenko V F, Gu J W, Baksht E, Wang R X, Yan P, Shao T 2015 Phys. Plasmas 22 123516

    [41]

    Song H M, Jia M, Jin D, Cui W, Wu Y 2016 Chin. Phys. B 25 262

    [42]

    Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 物理学报 65 047901]

    [43]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

  • [1]

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Volt. Eng. 42 685 (in Chinese) [邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685]

    [2]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学:物理学 力学 天文学 41 801]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 134703 (in Chinese) [李元, 穆海宝, 邓军波, 王曙鸿 2013 物理学报 62 134703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Korolev Y D, Mesyats G A 1998 Physics of Pulsed Breakdown in Gases (Ekaterinburg: URO-Press) pp161-162

    [6]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepove M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [7]

    Zhang C, Shao T, Long K H, Yu Y, Wang J, Zhang D D, Yan P, Zhou Y X 2010 IEEE Plasma Sci. 38 1517

    [8]

    Chen F, Huo Y J, He S F, Feng L C 2001 Chin. Phys. Lett. 18 228

    [9]

    Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R X, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511

    [10]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [11]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [12]

    Zhang C, Tarasenko V F, Gu J W, Baksht E K, Beloplotov D V, Burachenko A G, Yan P, Lomaev M I, Shao T 2016 Phys. Rev. Accel. Beams 19 030402

    [13]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [14]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [15]

    Kunhard E E, Tzeng Y 1988 Phys. Rev. A 38 1410

    [16]

    Babich L P 2005 Phys. -Usp. 48 1015

    [17]

    Vasilyak L M, Kostyuchenko S V, Kudryavtsev N N, Filyugin I V 1994 Phys. -Usp. 37 247

    [18]

    Raizer Y P, Allen J E 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp9-14

    [19]

    Gurevich A V, Zybin K P 2005 Phys. Today 58 37

    [20]

    Yakovlenko S I 2007 Proc. Prokhorov General Inst. 63 186

    [21]

    Noggle R C, Krider E P, Wayland J R 1968 J. Appl. Phys. 39 4746

    [22]

    Stankevich Y L, Kalinin V G 1968 Sov. Phys. Dokl. 12 1041

    [23]

    Shao T, Zhang C, Niu Z, Yan P 2011 Appl. Phys. Lett. 98 021503

    [24]

    Kochkin P, Köhn C, Ebert U, Deursen L V 2016 Plasma Sources Sci. Technol. 25 044002

    [25]

    Oreshkin E V, Barengolts S A, Chaikovsky S A, Oginov A V, Shpakov K V 2012 Phys. Plasmas 19 013108

    [26]

    Tarasenko V F, Lomaev M I, Beloplotov D V, Sorokin D A 2016 High Volt. 1 181

    [27]

    Tarasenko V F, Rybka D V 2016 High Volt. 1 43

    [28]

    Baksht E K, Burachenko A G, Erofeev M V, Tarasenko V F 2014 Plasma Phys. Rep. 40 404

    [29]

    Pan L S, Han S, Kania D R, Zhao S, Gan K K, Kagan H, Kass R, Malchow R, Morrow F, Palmer W F, White C, Kim S K, Sannes F, Schnetzer S, Stone R, Thomson G B, Sugimoto Y, Fry A, Kanda S, Olsen S, Franklin M, Ager J W, Pianetta P 1993 J. Appl. Phys. 74 1086

    [30]

    Spielman R B 1995 Rev. Sci. Instrum. 66 867

    [31]

    Gu J W, Zhang C, Wang R X, Yan P, Shao T 2016 Plasma Sci. Technol. 18 230

    [32]

    Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Chin. Phys. Lett. 31 085201

    [33]

    Zhang R, Luo H Y, Zou X B, Shi H T, Zhu X L, Zhao S, Wang X X, Yap S, Wong C S 2014 IEEE Trans. Plasma Sci. 42 3143

    [34]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [35]

    Wang X X 2012 High Volt. Eng. 38 1537 (in Chinese) [王新新 2012 高电压技术 38 1537]

    [36]

    Zou X B, Wang X X, Zhang G X, Han M, Luo C M 2006 Acta Phys. Sin. 55 1289 (in Chinese) [邹晓兵, 王新新, 张贵新, 韩旻, 罗承沐 2006 物理学报 55 1289]

    [37]

    Babich L P, Loiko T V, Tsukernab V A 1990 Sov. Phys. Usp. 33 521

    [38]

    Gurevich A V, Zybin K P 2001 Phys. -Usp. 44 1119

    [39]

    Nguyem C V, van Deursen A P J, van Heesch E J M, Winands G J J, Pemen A J M 2010 J. Phys. D: Appl. Phys. 43 025202

    [40]

    Zhang C, Tarasenko V F, Gu J W, Baksht E, Wang R X, Yan P, Shao T 2015 Phys. Plasmas 22 123516

    [41]

    Song H M, Jia M, Jin D, Cui W, Wu Y 2016 Chin. Phys. B 25 262

    [42]

    Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 物理学报 65 047901]

    [43]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

  • [1] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [2] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [3] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [4] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性. 物理学报, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [5] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [6] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [7] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍. 纳秒脉冲气体放电中逃逸电子束流的研究. 物理学报, 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [8] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [9] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [10] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] 武晋泽, 唐晋娥, 董有尔, 张国峰, 王彦华. 常压下气体放电等离子体振荡的实验与理论研究. 物理学报, 2012, 61(19): 195208. doi: 10.7498/aps.61.195208
    [12] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究. 物理学报, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [13] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [14] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究. 物理学报, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [15] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] 谢旭东, 王 逍, 朱启华, 曾小明, 王凤蕊, 黄小军, 周凯南, 王 方, 蒋东镔, 黄 征, 孙 立, 刘 华, 王晓东, 邓 武, 郭 仪, 张小民. 光谱分辨条纹相机测量高能啁啾脉冲特性. 物理学报, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [18] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [19] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌. 纳秒脉冲下高能量快电子逃逸过程的计算. 物理学报, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
计量
  • 文章访问数:  3327
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-03-12
  • 刊出日期:  2017-05-05

大气压管板结构纳秒脉冲放电中时域X射线研究

    基金项目: 国家自然科学基金(批准号:51477164,11611530681)和新能源电力系统国家重点实验室开放课题(批准号:LAPS16013).

摘要: 纳秒脉冲放电能在大气压下产生高电子能量、高功率密度的低温等离子体,由于经典放电理论无法很好地解释纳秒脉冲放电中的现象,近年来以高能逃逸电子为基础的纳秒脉冲气体放电理论受到广泛关注.纳秒脉冲放电会产生高能逃逸电子,伴随产生X射线,研究X射线的特性可以间接反映高能逃逸电子的特性.本文利用纳秒脉冲电源在大气压下激励空气放电,通过金刚石光导探测器测量放电产生的X射线,研究不同电极间隙、阳极厚度下和空间不同位置测量的X射线特性.实验结果表明,在大气压下纳秒脉冲放电能产生上升沿约1 ns,脉宽约2 ns的X射线脉冲,其产生时间与纳秒脉冲电压峰值对应,经计算探测到的X射线能量约为2.310-3 J.当增大电极间隙时,探测到的X射线能量减弱,因为增大电极间隙会减小电场强度和逃逸电子数,从而减少阳极的轫致辐射.电极间距大于50 mm后加速减弱,同时放电模式从弥散过渡到电晕.随着阳极厚度增加,阳极后方和放电腔侧面观察窗测得的X射线能量均有所减弱,在阳极后面探测的X射线能量减弱趋势更加明显,这说明X射线主要产生在阳极内表面,因此增加阳极厚度会使穿透阳极薄膜的X射线能量减少.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回