搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲气体放电中逃逸电子束流的研究

章程 马浩 邵涛 谢庆 杨文晋 严萍

引用本文:
Citation:

纳秒脉冲气体放电中逃逸电子束流的研究

章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍

Runaway electron beams in nanosecond-pulse discharges

Zhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, Yan Ping
PDF
导出引用
  • 经典的放电理论(Townsend和流注理论)不能很好地解释纳秒脉冲放电中的现象,近年来基于高能量电子逃逸击穿的纳秒脉冲气体放电理论研究受到广泛关注. 有研究发现,高能逃逸电子是纳秒脉冲气体放电中的新特征参数. 本文研制了用于测量纳秒脉冲放电中逃逸电子束流的收集器,并对脉宽35 ns、上升沿1.21.6 ns激励的大气压纳秒脉冲气体放电中逃逸电子束流进行了测量. 收集器采用类似法拉第杯的原理,利用金属极收集纳秒脉冲放电中的高能电子,并转换为电信号后由示波器采集. 为了获得更好的逃逸电子束流波形,对逃逸电子束流收集器进行了优化设计,提高了收集器的阻抗匹配特性. 基于上述的逃逸电子束流收集器,研究了纳秒脉冲气体放电中逃逸电子的特征. 实验结果表明,所设计的收集器可以有效地测量到逃逸电子束流,改进设计后收集器测得的逃逸电子束流的时间分辨率和幅值均得到提高. 施加电压约80 kV 时,大气压空气中的逃逸电子束流幅值可达160 mA,脉宽小于1 ns. 多个脉冲激励放电的结果表明逃逸电子束流收集器具有较好的可靠性,其瞬态响应与时间分辨率比较稳定.
    Conventional discharge (Townsend and streamer mechanisms) theories are not able to well explain the phenomenon in nanosecond-pulse discharges. Recently, much attention has been paid to the runaway breakdown due to high-energy electrons in nanosecond-pulse discharges, and some experimental data confirm that high-energy runaway electron beam is an important characteristic parameter for nanosecond-pulse discharges. In this paper, two designed collectors are used for detecting runaway electron beams in nanosecond-pulse discharges. These collectors are used to measure the runaway electron beams in discharges driven by a nanosecond-pulse generator with a pulse width of 3-5 ns and a rise time of 1.2-1.6 ns. The measuring principle of both two collectors is similar to that of Faraday cup, where high-energy electrons are collected by a metal cone, and converted into an electric signal that can be recorded by an oscilloscope. Furthermore, optimal designs of collectors are conducted in order to improve the impedance matching characteristics and to obtain better recording data. Using the above two collectors, characteristics of runaway electron beams are investigated. Experimental results show that runaway electron beams can be effectively measured by the collectors, and the optimized collector has a shorter time resolution and higher amplitude of the runaway electron beam current. When the applied voltage is 80 kV, the electron beam current can be measured with an amplitude of 160 mA and a full width at half maximum of less than 1 ns. In addition, experimental results with pulse sequences prove that the collectors have excellent reliability, and both the transient response and the time resolution are stable.
    • 基金项目: 国家自然科学基金(批准号:51207154,51222701)、国家重点基础研究发展计划(批准号:2014CB239505)和新能源电力系统国家重点实验室开放基金(批准号:LAPS14009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51207154, 51222701), the National Basic Research Program of China (Grant No. 2014CB239505), and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, China (Grant No. LAPS14009).
    [1]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801]

    [2]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703 (in Chinese) [李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Zhang C, Shao T, Tarasenko V F, Ma H, Ren C Y, Kostyrya I D, Zhang D D, Yan P 2012 Phys. Plasmas 19 123516

    [6]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [7]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [8]

    Shao T, Zhang C, Long K H, Wang J, Zhang D D, Yan P 2013 Chin. Phys. B 19 040601

    [9]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [10]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [11]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069

    [12]

    Babich L P 2005 Sov. Phys. Usp. 48 1015

    [13]

    Vasilyak L M, Vetchinin S P, Polyakov D N 1999 Tech. Phys. Lett. 25 749

    [14]

    Lu H W, Zha X J, Hu L Q, Lin S Y, Zhou R J, Luo J R, Zhong F C 2012 Acta Phys. Sin. 61 075202 (in Chinese) [卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川 2012 物理学报 61 075202]

    [15]

    Alekseev S B, Orlovskii V M, Tarasenko V F 2003 Tech. Phys. Lett. 29 411

    [16]

    Zhang C, Tarasenko V F, Shao T, Baksht E Kh, Burachenko A G, Yan P, Kostyray I D 2013 Laser Part. Beams 31 353

    [17]

    Mesyats G A, Reutova A G, Sharypov K A, Shpak V G, Shunailov S A, Yalandin M I 2011 Laser Part. Beams 29 425

    [18]

    Babich L P, Loiko T V 2010 Plasma Phys. Rep. 36 263

    [19]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepov M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [20]

    Tarasenko V F, Kostyrya I D, Baksht E K, Rybka D V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1250

    [21]

    Alekseev S B, Lomaev M I, Rybka D V, Tarasenko V F, Shao T, Zhang C, Yan P 2013 High Voltage Engineering 39 2112

    [22]

    Alekseev S B, Baksht E K, Rybka D V, Tarasenko V F 2013 IEEE Trans. Plasma Sci. 41 2201

    [23]

    Tarasenko V F, Rybka D V, Burachenko A G, Lomaev M I, Balzovsky E V 2012 Rev. Sci. Instrum. 83 086106

    [24]

    Rybka D V, Tarasenko V F, Burachenko A G, Balzovskii E V 2012 Tech. Phys. Lett. 38 653

    [25]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burachenko A G, Shutko Y V 2011 Appl. Phys. Lett. 98 021503

    [26]

    Zhang C, Gu J W, Shao T, Ma H, Yan P 2014 High Power Laser and Particle Beams 26 045029 (in Chinese) [章程, 顾建伟, 邵涛, 马浩, 严萍 2014 强激光与粒子束 26 045029]

    [27]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Yan P 2013 J. Appl. Phys. 113 093301

    [28]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [29]

    Zhang C, Shao T, Yu Y, Niu Z, Yan P, Zhou Y 2010 Rev. Sci. Instrum. 31 123501

    [30]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Kostyrya I D, Shutko V 2011 J. Appl. Phys. 109 083306

    [31]

    Zhang C, Shao T, Yan P, Tarasenko V F 2013 High Voltage Engineering 39 2095

    [32]

    Burachenko A G, Tarasenko V F 2010 Tech. Phys. Lett. 36 1158

    [33]

    Tarasenko V F, Yakovlenko S I 2004 Phys. Usp. 47 887

    [34]

    Zhang C, Shao T, Ma H, Zhang D, Ren C, Yan P, Tarasenko V, Schamiloglu E 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304

  • [1]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801]

    [2]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703 (in Chinese) [李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Zhang C, Shao T, Tarasenko V F, Ma H, Ren C Y, Kostyrya I D, Zhang D D, Yan P 2012 Phys. Plasmas 19 123516

    [6]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [7]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [8]

    Shao T, Zhang C, Long K H, Wang J, Zhang D D, Yan P 2013 Chin. Phys. B 19 040601

    [9]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [10]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [11]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069

    [12]

    Babich L P 2005 Sov. Phys. Usp. 48 1015

    [13]

    Vasilyak L M, Vetchinin S P, Polyakov D N 1999 Tech. Phys. Lett. 25 749

    [14]

    Lu H W, Zha X J, Hu L Q, Lin S Y, Zhou R J, Luo J R, Zhong F C 2012 Acta Phys. Sin. 61 075202 (in Chinese) [卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川 2012 物理学报 61 075202]

    [15]

    Alekseev S B, Orlovskii V M, Tarasenko V F 2003 Tech. Phys. Lett. 29 411

    [16]

    Zhang C, Tarasenko V F, Shao T, Baksht E Kh, Burachenko A G, Yan P, Kostyray I D 2013 Laser Part. Beams 31 353

    [17]

    Mesyats G A, Reutova A G, Sharypov K A, Shpak V G, Shunailov S A, Yalandin M I 2011 Laser Part. Beams 29 425

    [18]

    Babich L P, Loiko T V 2010 Plasma Phys. Rep. 36 263

    [19]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepov M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [20]

    Tarasenko V F, Kostyrya I D, Baksht E K, Rybka D V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1250

    [21]

    Alekseev S B, Lomaev M I, Rybka D V, Tarasenko V F, Shao T, Zhang C, Yan P 2013 High Voltage Engineering 39 2112

    [22]

    Alekseev S B, Baksht E K, Rybka D V, Tarasenko V F 2013 IEEE Trans. Plasma Sci. 41 2201

    [23]

    Tarasenko V F, Rybka D V, Burachenko A G, Lomaev M I, Balzovsky E V 2012 Rev. Sci. Instrum. 83 086106

    [24]

    Rybka D V, Tarasenko V F, Burachenko A G, Balzovskii E V 2012 Tech. Phys. Lett. 38 653

    [25]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burachenko A G, Shutko Y V 2011 Appl. Phys. Lett. 98 021503

    [26]

    Zhang C, Gu J W, Shao T, Ma H, Yan P 2014 High Power Laser and Particle Beams 26 045029 (in Chinese) [章程, 顾建伟, 邵涛, 马浩, 严萍 2014 强激光与粒子束 26 045029]

    [27]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Yan P 2013 J. Appl. Phys. 113 093301

    [28]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [29]

    Zhang C, Shao T, Yu Y, Niu Z, Yan P, Zhou Y 2010 Rev. Sci. Instrum. 31 123501

    [30]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Kostyrya I D, Shutko V 2011 J. Appl. Phys. 109 083306

    [31]

    Zhang C, Shao T, Yan P, Tarasenko V F 2013 High Voltage Engineering 39 2095

    [32]

    Burachenko A G, Tarasenko V F 2010 Tech. Phys. Lett. 36 1158

    [33]

    Tarasenko V F, Yakovlenko S I 2004 Phys. Usp. 47 887

    [34]

    Zhang C, Shao T, Ma H, Zhang D, Ren C, Yan P, Tarasenko V, Schamiloglu E 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304

计量
  • 文章访问数:  2239
  • PDF下载量:  1110
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 修回日期:  2014-01-16
  • 刊出日期:  2014-04-05

纳秒脉冲气体放电中逃逸电子束流的研究

  • 1. 中国科学院电工研究所, 北京 100190;
  • 2. 中国科学院电力电子与电气驱动重点实验室, 北京 100190;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 华北电力大学, 新能源电力系统国家重点实验室, 保定 071003
    基金项目: 

    国家自然科学基金(批准号:51207154,51222701)、国家重点基础研究发展计划(批准号:2014CB239505)和新能源电力系统国家重点实验室开放基金(批准号:LAPS14009)资助的课题.

摘要: 经典的放电理论(Townsend和流注理论)不能很好地解释纳秒脉冲放电中的现象,近年来基于高能量电子逃逸击穿的纳秒脉冲气体放电理论研究受到广泛关注. 有研究发现,高能逃逸电子是纳秒脉冲气体放电中的新特征参数. 本文研制了用于测量纳秒脉冲放电中逃逸电子束流的收集器,并对脉宽35 ns、上升沿1.21.6 ns激励的大气压纳秒脉冲气体放电中逃逸电子束流进行了测量. 收集器采用类似法拉第杯的原理,利用金属极收集纳秒脉冲放电中的高能电子,并转换为电信号后由示波器采集. 为了获得更好的逃逸电子束流波形,对逃逸电子束流收集器进行了优化设计,提高了收集器的阻抗匹配特性. 基于上述的逃逸电子束流收集器,研究了纳秒脉冲气体放电中逃逸电子的特征. 实验结果表明,所设计的收集器可以有效地测量到逃逸电子束流,改进设计后收集器测得的逃逸电子束流的时间分辨率和幅值均得到提高. 施加电压约80 kV 时,大气压空气中的逃逸电子束流幅值可达160 mA,脉宽小于1 ns. 多个脉冲激励放电的结果表明逃逸电子束流收集器具有较好的可靠性,其瞬态响应与时间分辨率比较稳定.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回