搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能

陆益敏 黄国俊 程勇 王赛 刘旭 韦尚方 米朝伟

引用本文:
Citation:

脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能

陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟

Tribological and mechanical properties of non-hydrogenated W-doped diamond-like carbon film prepared by pulsed laser deposition

Lu Yi-Min, Huang Guo-Jun, Cheng Yong, Wang Sai, Liu Xu, Wei Shang-Fang, Mi Chao-Wei
PDF
HTML
导出引用
  • 采用脉冲激光沉积技术制备出无氢钨掺杂非晶态类金刚石膜. 膜中的钨含量与靶材中的钨含量保持稳定的线性关系, 显示了脉冲激光沉积在难熔金属掺杂技术方面的亮点. 由于碳-钨结构的形成和表面粗糙度影响, 膜层的干摩擦系数随着钨含量的增加显现出先减后增的趋势, 钨含量为9.67 at.%时达到最低值0.091. 钨含量的增大降低了类金刚石膜纳米硬度和杨氏模量, 但最佳的膜层耐磨性参数并非表现在硬度最大(52.2 GPa)的纯类金刚石膜中, 而是出现在低掺杂含量(6.28 at.%)的类金刚石膜中. 研究为脉冲激光沉积技术制备低摩擦、高硬度无氢钨掺杂类金刚石膜的应用提供了技术实践.
    Non-hydrogenated W-doped amorphous diamond-like carbon films with different tungsten content are prepared by pulsed laser deposition through using the W-doped graphite targets. The variation of the tungsten content in the doped diamond-like carbon films has a stable linear relation with tungsten content in the doped targets, which shows the importance of pulsed laser deposition in the field of the refractory metal doping technology. The doped tungsten has no effect on the crystal structure of the diamond-like carbon film according to X-ray diffraction test. In the W-doped diamond-like carbon film, most of the tungsten atoms form the tungsten carbides with the carbon atoms when the tungsten content is relatively low, and inlay in the network of the amorphous carbon, reducing the carbon coordination atoms and local density. In addition, the tungsten oxides formed from the tungsten atoms and oxygen atoms help to reduce the friction coefficient. Therefore, the friction coefficient of the films decreases with the tungsten content increasing, and the lowest friction coefficient is 0.091 at the doping content of 9.67 at.%. However, more and more tungsten clusters form with the tungsten content further increasing according to the results of atomic force microscope, thus increasing the surface roughness of the diamond-like carbon films and resulting dominantly in the increase of the friction coefficient. On the other hand, the increasing of tungsten content reduces the nano-hardness and Yang’s modulus of the doped diamond-like carbon film due to the reduction of the local atomic binding energy in the per unit volume. However, the best wear-resistance is shown in the W-doped diamond-like carbon film with relatively low tungsten content of 6.28 at.%, instead of the pure diamond-like carbon film with the highest hardness of 52.2 GPa. This research offers an experimental base for practical applications of the non-hydrogenated W-doped diamond-like carbon film with low friction coefficient and high hardness grown by pulsed laser deposition. An optimized W-doped diamond-like carbon film has low friction coefficient and high hardness, along with the high heat conduction and resistance, and can be used as protective tribological coatings for the micro- and nano- electron devices to improve their working stability and reduce the sizes.
      通信作者: 程勇, gdyjs@263.net
    • 基金项目: “核高基”科技重大专项(批准号: 2014ZX01005-101-003)和国家自然科学基金(批准号: 61705268)资助的课题
      Corresponding author: Cheng Yong, gdyjs@263.net
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX01005-101-003) and the National Natural Science Foundation of China (Grant No. 61705268)
    [1]

    李建, 童洪辉, 王坤, 但敏, 金凡亚 2020 功能材料 51 08204Google Scholar

    Li J, Tong H H, Dan M, Jin F Y 2020 Funct. Mater. 51 08204Google Scholar

    [2]

    Reichenbach T, Mayrhofer L, Kuwahara T, Moseler M, Moras G 2020 ACS Appl. Mater. Interfaces 12 8805Google Scholar

    [3]

    Das D, Dey R, Das S, Hussain S, Ghosh A K, Pal A K 2020 J. Polym. Environ. 28 284Google Scholar

    [4]

    Modabberasl A, Sharifi M, Shahbazi F, Kameli P 2019 Appl. Surf. Sci. 479 639Google Scholar

    [5]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Tyagi P K, Bajaj B 2019 Int. J. Refract. Met. Hard. Mater. 78 107Google Scholar

    [6]

    Triroj N, Saensak R, Porntheeraphat S, Paosawatyanyong B, Amornkitbamrung V 2020 Anal. Chem. 92 3650Google Scholar

    [7]

    薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第32页

    Xue Q J, Wang L P 2012 Thin Film Materials of Carbon-base Diamond-like Carbon (Beijing: Science Press) p32

    [8]

    Guo Y Z, Guo P, Sun L L, Li X W, Ke P L, Li Q, Wang A Y 2019 Surf. Interface Anal. 51 361Google Scholar

    [9]

    Wang S Y, Liu X, Liu Y, Zhang W X, Li Z L, Guo Y L 2019 IOP Conf. Series: Earth and Environmental Science 371 042014Google Scholar

    [10]

    Boubiche N, Hamouchi J E, Hulik J, Abdesslam M, Speisser C, Djeffal F, Normand F L 2019 Diamond Relat. Mater. 91 190Google Scholar

    [11]

    程勇 2017 脉冲激光沉积类金刚石膜技术[北京: 科学出版社] 第26页

    Cheng Y 2017 Technology of Diamond-like Carbon Film Prepared by Pulsed Laser Deposition (Beijing: Science Press) p26

    [12]

    Jelinek M, Zemek J, Kocourek T, Remsa J, Miksovsky J, Pisarik P, Jurek K, Tolde Z, Travnickova M, Vandrovcov M, Filova E 2016 Laser Phys. 26 105605Google Scholar

    [13]

    Gayathri S, Kumar N, Krishnan R, Ravindran T R, Dash S, Tyagi A K, Sridharan M 2015 Mater. Chem. Phys. 167 194Google Scholar

    [14]

    Constantinou M, Pervolaraki M, Nikolaou P, Prouskas C, Patsalas P, Kelires P, Giapintzakis J, Constantinides G 2017 Surf. Coat. Technol. 309 320Google Scholar

    [15]

    Grigoriev S N, Fominski V Y, Romanov R I, Gnedovets A G 2014 Thin Solid Films 556 35Google Scholar

    [16]

    Constantinou M, Pervolaraki M, Koutsokeras L, Prouskas C, Patsalas P, Kelires P, Giapintzakis J, Constantinides G 2017 Surf. Coat. Technol. 330 185Google Scholar

    [17]

    Foong Y M, Koh A T T, Lim S R, Hsieh J, Chua D H C 2012 Diamond Relat. Mater. 25 103Google Scholar

    [18]

    Panda M, Krishnan R, N Krishna G, Amirthapandian S, Magudapathy P, Kamruddin M 2019 Ceram. Int. 45 8847Google Scholar

    [19]

    Kiryukhantsev-Korneeva F V, Bondarev A V 2019 Phys. Metals Metallogr. 120 702

    [20]

    Saikat P, Maity R, Kumar S 2020 Ceram. Int. 46 22805

    [21]

    徐丽萍, 林松盛 2019 电镀与涂饰 38 663Google Scholar

    Xu L P, Lin S S 2019 Electroplat. Finish. 38 663Google Scholar

    [22]

    何帅, 孙德恩, 曾宪光, 王建川 2019 化工新型材料 47 162

    He S, Sun D E, Zeng X G, Wang J C 2019 New Chem. Mater. 47 162

    [23]

    Chen J L, Ji P Y, Jin C G, Zhuge L J, Wu X M 2019 Plasma Sci. Technol. 21 025502Google Scholar

    [24]

    Zhou S, Liu L, Ma L 2017 J. Non-Cryst. Solids 455 35

    [25]

    Vengudusamy B, Green J H, Lamb G D, Spikes H A 2013 Wear 298-299 109Google Scholar

    [26]

    Hatada R, Flege S, Ashraf M N, Timmermann A, Schmid C, Ensinger W 2020 Coatings 10 360Google Scholar

    [27]

    Neuville S 2011 Surf. Coat. Technol. 206 703Google Scholar

    [28]

    Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar

  • 图 1  实验示意图.

    Fig. 1.  Experimental sketch.

    图 2  钨掺杂DLC膜的XPS光谱 (a) W4f谱; (b) C1s谱

    Fig. 2.  XPS spectra of the W-doped DLC films: (a) W4f spectrum; (b) C1s spectrum.

    图 3  靶材与对应膜层的掺杂含量

    Fig. 3.  Tungsten content in the targets and their related films.

    图 4  DLC膜的典型XRD衍射图样

    Fig. 4.  Typical XRD patterns of the DLC films.

    图 5  钨掺杂DLC膜的摩擦系数 (a) 典型的微摩擦测试曲线; (b) 掺杂含量对摩擦系数的影响

    Fig. 5.  Friction coefficient of the W-doped DLC films: (a) Typical measured curves of the mirco-tribometer; (b) influences of the doping content on the friction coefficient.

    图 6  DLC膜的AFM形貌及表面粗糙度 (a) AFM形貌; (b) 均方根粗糙度

    Fig. 6.  AFM imaging and RMS roughness of the DLC films: (a) AFM imaging; (b) RMS roughness.

    图 7  DLC膜的纳米压痕 (a) 载荷-压入深度曲线; (b) 纳米压痕计算结果

    Fig. 7.  Nano-indentation of the DLC films: (a) Curve of the load vs. indentation depth; (b) calculated results of the nano-indentation

    图 8  钨掺杂含量对DLC膜的摩擦系数和耐磨性能的影响

    Fig. 8.  Influence of the tungsten content on friction coefficient and H/E of DLC films.

  • [1]

    李建, 童洪辉, 王坤, 但敏, 金凡亚 2020 功能材料 51 08204Google Scholar

    Li J, Tong H H, Dan M, Jin F Y 2020 Funct. Mater. 51 08204Google Scholar

    [2]

    Reichenbach T, Mayrhofer L, Kuwahara T, Moseler M, Moras G 2020 ACS Appl. Mater. Interfaces 12 8805Google Scholar

    [3]

    Das D, Dey R, Das S, Hussain S, Ghosh A K, Pal A K 2020 J. Polym. Environ. 28 284Google Scholar

    [4]

    Modabberasl A, Sharifi M, Shahbazi F, Kameli P 2019 Appl. Surf. Sci. 479 639Google Scholar

    [5]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Tyagi P K, Bajaj B 2019 Int. J. Refract. Met. Hard. Mater. 78 107Google Scholar

    [6]

    Triroj N, Saensak R, Porntheeraphat S, Paosawatyanyong B, Amornkitbamrung V 2020 Anal. Chem. 92 3650Google Scholar

    [7]

    薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第32页

    Xue Q J, Wang L P 2012 Thin Film Materials of Carbon-base Diamond-like Carbon (Beijing: Science Press) p32

    [8]

    Guo Y Z, Guo P, Sun L L, Li X W, Ke P L, Li Q, Wang A Y 2019 Surf. Interface Anal. 51 361Google Scholar

    [9]

    Wang S Y, Liu X, Liu Y, Zhang W X, Li Z L, Guo Y L 2019 IOP Conf. Series: Earth and Environmental Science 371 042014Google Scholar

    [10]

    Boubiche N, Hamouchi J E, Hulik J, Abdesslam M, Speisser C, Djeffal F, Normand F L 2019 Diamond Relat. Mater. 91 190Google Scholar

    [11]

    程勇 2017 脉冲激光沉积类金刚石膜技术[北京: 科学出版社] 第26页

    Cheng Y 2017 Technology of Diamond-like Carbon Film Prepared by Pulsed Laser Deposition (Beijing: Science Press) p26

    [12]

    Jelinek M, Zemek J, Kocourek T, Remsa J, Miksovsky J, Pisarik P, Jurek K, Tolde Z, Travnickova M, Vandrovcov M, Filova E 2016 Laser Phys. 26 105605Google Scholar

    [13]

    Gayathri S, Kumar N, Krishnan R, Ravindran T R, Dash S, Tyagi A K, Sridharan M 2015 Mater. Chem. Phys. 167 194Google Scholar

    [14]

    Constantinou M, Pervolaraki M, Nikolaou P, Prouskas C, Patsalas P, Kelires P, Giapintzakis J, Constantinides G 2017 Surf. Coat. Technol. 309 320Google Scholar

    [15]

    Grigoriev S N, Fominski V Y, Romanov R I, Gnedovets A G 2014 Thin Solid Films 556 35Google Scholar

    [16]

    Constantinou M, Pervolaraki M, Koutsokeras L, Prouskas C, Patsalas P, Kelires P, Giapintzakis J, Constantinides G 2017 Surf. Coat. Technol. 330 185Google Scholar

    [17]

    Foong Y M, Koh A T T, Lim S R, Hsieh J, Chua D H C 2012 Diamond Relat. Mater. 25 103Google Scholar

    [18]

    Panda M, Krishnan R, N Krishna G, Amirthapandian S, Magudapathy P, Kamruddin M 2019 Ceram. Int. 45 8847Google Scholar

    [19]

    Kiryukhantsev-Korneeva F V, Bondarev A V 2019 Phys. Metals Metallogr. 120 702

    [20]

    Saikat P, Maity R, Kumar S 2020 Ceram. Int. 46 22805

    [21]

    徐丽萍, 林松盛 2019 电镀与涂饰 38 663Google Scholar

    Xu L P, Lin S S 2019 Electroplat. Finish. 38 663Google Scholar

    [22]

    何帅, 孙德恩, 曾宪光, 王建川 2019 化工新型材料 47 162

    He S, Sun D E, Zeng X G, Wang J C 2019 New Chem. Mater. 47 162

    [23]

    Chen J L, Ji P Y, Jin C G, Zhuge L J, Wu X M 2019 Plasma Sci. Technol. 21 025502Google Scholar

    [24]

    Zhou S, Liu L, Ma L 2017 J. Non-Cryst. Solids 455 35

    [25]

    Vengudusamy B, Green J H, Lamb G D, Spikes H A 2013 Wear 298-299 109Google Scholar

    [26]

    Hatada R, Flege S, Ashraf M N, Timmermann A, Schmid C, Ensinger W 2020 Coatings 10 360Google Scholar

    [27]

    Neuville S 2011 Surf. Coat. Technol. 206 703Google Scholar

    [28]

    Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [5] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [6] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [7] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [8] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿). 物理学报, 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [9] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射. 物理学报, 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [10] 安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛. TiN薄膜在纳米压痕和纳米划痕下的断裂行为. 物理学报, 2013, 62(13): 136201. doi: 10.7498/aps.62.136201
    [11] 张艳, 王增梅, 陈云飞, 郭新立, 孙伟, 袁国亮, 殷江, 刘治国. 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能. 物理学报, 2013, 62(6): 066802. doi: 10.7498/aps.62.066802
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [14] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征. 物理学报, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [15] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [16] 王培君, 江美福, 杜记龙, 戴永丰. 射频反应磁控溅射法制备的氟化类金刚石薄膜摩擦特性研究. 物理学报, 2010, 59(12): 8920-8926. doi: 10.7498/aps.59.8920
    [17] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [18] 张建民, 徐可为. 纳米压痕法测量Cu的室温蠕变速率敏感指数. 物理学报, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [19] 朱丹丹, 章晓中, 薛庆忠. 用脉冲激光方法在Si(100)上沉积的Cox-C1-x颗粒膜及其磁电阻效 应. 物理学报, 2003, 52(12): 3181-3185. doi: 10.7498/aps.52.3181
    [20] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
计量
  • 文章访问数:  4932
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-09-26
  • 上网日期:  2021-02-05
  • 刊出日期:  2021-02-20

/

返回文章
返回