搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿)

王伟 唐佳伟 王乐天 陈小兵

引用本文:
Citation:

脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿)

王伟, 唐佳伟, 王乐天, 陈小兵

High-temperature piezoelectirc thin films of 0.20BiInO3-0.80PbTiO3 deposited by pulsed laser deposition(Retracted Article)

Wang Wei, Tang Jia-Wei, Wang Le-Tian, Chen Xiao-Bing
PDF
导出引用
  • 采用脉冲激光沉积法制备了0.20BiInO3-0.80PbTiO3(20BI-PT)高温压电薄膜,并与0.15BiInO3-0.85PbTiO3(15BI-PT)样品进行了比较研究. X射线衍射谱显示,20BI-PT样品100峰出现了明显的劈裂,显示样品具有更高的四方对称性. FESEM图显示,20BI-PT样品中出现了部分111取向的三角形晶粒. 20BI-PT样品的铁电剩余极化(Pr)为~28 C/cm2,矫顽场(Ec)为~120 kV/cm,相较15BI-PT样品,Pr略有增加,但同时Ec也有增加. 20BI-PT样品的横向压电系数(e31,f)约为4.70.6 C/m2,和15BI-PT相比几乎一样. 介电温度谱显示,20BI-PT 样品的居里温度比15BI-PT增加了约30 ℃,达590 ℃,且介电峰没有明显的频率依赖性. Rayleigh分析显示,20BI-PT样品中内在本征因素及可翻转畴对介电非线性的贡献和15BI-PT基本相同,但是外在因素的贡献没有15BI-PT的贡献大,这可能和20BI-PT样品中晶粒111相对取向率较高有关.
    High-temperature piezoelectric thin films of 0.20BiInO3-0.80PbTiO3 (20BI-PT) were prepared via pulsed laser deposition and investigated by comparison with 0.15BiInO3-0.85PbTiO3(15BI-PT). XRD patterns show that (100) peak of 20BI-PT has been split, indicating a higher tetragnality than in 15BI-PT. FESEM images reveal some triangular grains corresponding to [111]-oriented grains in 20BI-PT. The remanent polarization (Pr) and coercive field (Ec) of 20BI-PT are ~ 28 C/cm2 and ~120 kV/cm, respectively. It is shown that the transverse piezoelectric coefficient e31, f keeps almost the same in 20BI-PT and 15BI-PT. The temperature dependence of dielectric permittivity in 20BI-PT reveals a higher Curie temperature (590 ℃) than that in 15BI-PT and no apparent frequency dependence is detected. Rayleigh analyses are performed to identify the extrinsic contributions to dielectric nonlinearity for different x. It is seen that x=0.15 exhibits greater extrinsic contributions to dielectric nonlinearity than the other compositions.
    • 基金项目: 国家自然科学基金(批准号:51072177)和江苏省教育厅自然科学基础研究(批准号:08KJB140011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51072177), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 08KJB140011).
    [1]

    Randall C A, Eitel R E, Stringer C, Song T H, Zhang S J, Shrout T R 2004 High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals edited by S. Trolier-McKinstry (The Pennsylvania State University, University Park, 2004)

    [2]

    Turner R C, Fuierer P A, Newnham R E, Shrout T R 1994 Appl. Acoust. 41 299

    [3]

    Liu P, Yang T Q, Zhang L Y 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹 2000 物理学报 49 2303]

    [4]

    Eitel R E, Randall C A, Shrout T R 2001 Jpn. J. Appl. Phys. Part 1 40 5999

    [5]

    Eitel R E, Randall C A, Shrout T R 2002 Jpn. J. Appl. Phys. Part 1 41 2099

    [6]

    Nino J C, Trolier-McKinstry S 2004 J. Mater. Res. 19 568

    [7]

    Wen H, Wang X, Zhong C, Shu L, Li L 2007 Appl. Phys. Lett. 90 202902

    [8]

    Grinberg I, Suchomel M R, Davies P K, Rappe A M 2005 J. Appl. Phys. 98 094111

    [9]

    Duan R, Speyer R F, Alberta E, Shrout T R 2004 J. Mater. Res. 19 2185

    [10]

    Zhang S, Xia R, Randall C A, Shrout T R, Duan R, Speyer R F 2005 J. Mater. Res. 20 2067

    [11]

    Ko S W, Yeo H G, Trolier-McKinstry S 2009 Appl. Phys. Lett. 95 162901

    [12]

    Lee S Y, Ko S W, Lee S, Trolier-McKinstry S 2012 Appl. Phys. Lett. 100 212905

    [13]

    Qin B, Chen Y, Jiang Y, Xue X, Xiao D, Zhu J 2007 Proceedings of the 16th IEEE International Symposium on Applications of Ferroelectric 616–617

    [14]

    Wilke R H T, Moses P, Jousse P, Yeager C, Trolier-McKinstry S 2012 Sensors and Actuators A 173 152

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Li Y, Yang Y, Yao J, Viswan R, Wang Z, Li J, Viehland D 2012 Appl. Phys. Lett. 101 022905

    [17]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [18]

    Yang N, Chen G H, Zhang Y 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨宁, 陈光华, 张阳 2000 物理学报 49 2225]

    [19]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

    [20]

    Noguchi Y, Miwa I, Goshima Y, Miyayama M 2000 Jpn. J. Appl. Phys. 39 L1259

    [21]

    Gharb N B, Trolier-McKinstry S 2005 J. Appl. Phys. 97 064106

    [22]

    Ihlefeld J F, Shelton C T 2012 Appl. Phys. Lett. 101 052902

    [23]

    Damjanovic D, Demartin M 1996 J. Phys. D: Appl. Phys. 29 2057

  • [1]

    Randall C A, Eitel R E, Stringer C, Song T H, Zhang S J, Shrout T R 2004 High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals edited by S. Trolier-McKinstry (The Pennsylvania State University, University Park, 2004)

    [2]

    Turner R C, Fuierer P A, Newnham R E, Shrout T R 1994 Appl. Acoust. 41 299

    [3]

    Liu P, Yang T Q, Zhang L Y 2000 Acta Phys. Sin. 49 2300 (in Chinese) [刘鹏, 杨同青, 张良莹 2000 物理学报 49 2303]

    [4]

    Eitel R E, Randall C A, Shrout T R 2001 Jpn. J. Appl. Phys. Part 1 40 5999

    [5]

    Eitel R E, Randall C A, Shrout T R 2002 Jpn. J. Appl. Phys. Part 1 41 2099

    [6]

    Nino J C, Trolier-McKinstry S 2004 J. Mater. Res. 19 568

    [7]

    Wen H, Wang X, Zhong C, Shu L, Li L 2007 Appl. Phys. Lett. 90 202902

    [8]

    Grinberg I, Suchomel M R, Davies P K, Rappe A M 2005 J. Appl. Phys. 98 094111

    [9]

    Duan R, Speyer R F, Alberta E, Shrout T R 2004 J. Mater. Res. 19 2185

    [10]

    Zhang S, Xia R, Randall C A, Shrout T R, Duan R, Speyer R F 2005 J. Mater. Res. 20 2067

    [11]

    Ko S W, Yeo H G, Trolier-McKinstry S 2009 Appl. Phys. Lett. 95 162901

    [12]

    Lee S Y, Ko S W, Lee S, Trolier-McKinstry S 2012 Appl. Phys. Lett. 100 212905

    [13]

    Qin B, Chen Y, Jiang Y, Xue X, Xiao D, Zhu J 2007 Proceedings of the 16th IEEE International Symposium on Applications of Ferroelectric 616–617

    [14]

    Wilke R H T, Moses P, Jousse P, Yeager C, Trolier-McKinstry S 2012 Sensors and Actuators A 173 152

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Li Y, Yang Y, Yao J, Viswan R, Wang Z, Li J, Viehland D 2012 Appl. Phys. Lett. 101 022905

    [17]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [18]

    Yang N, Chen G H, Zhang Y 2000 Acta Phys. Sin. 49 2225 (in Chinese) [杨宁, 陈光华, 张阳 2000 物理学报 49 2225]

    [19]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

    [20]

    Noguchi Y, Miwa I, Goshima Y, Miyayama M 2000 Jpn. J. Appl. Phys. 39 L1259

    [21]

    Gharb N B, Trolier-McKinstry S 2005 J. Appl. Phys. 97 064106

    [22]

    Ihlefeld J F, Shelton C T 2012 Appl. Phys. Lett. 101 052902

    [23]

    Damjanovic D, Demartin M 1996 J. Phys. D: Appl. Phys. 29 2057

  • [1] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [2] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动. 物理学报, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [4] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能. 物理学报, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] 陈小明, 李国荣. BaTiO3基无铅陶瓷大电致伸缩系数. 物理学报, 2022, 71(16): 167701. doi: 10.7498/aps.71.20220451
    [6] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [7] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [9] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [10] 安志鸿, 黄林敏, 赵锦波, 胡倩倩, 孙转兰, 郑欢, 张晓青. 面向空耦电声换能器应用的高性能FEP/PTFE复合膜压电驻极体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211609
    [11] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [12] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [13] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [14] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [15] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [16] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [17] 王大为, 谷志刚, 张健. 液相外延层层浸渍组装金属-有机框架薄膜及其物理性能. 物理学报, 2020, 69(12): 126801. doi: 10.7498/aps.69.20200274
    [18] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [19] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [20] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
计量
  • 文章访问数:  4269
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-12-05

/

返回文章
返回