搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸锶钡材料在外加电场作用下的拉曼光谱研究

张奇伟 翟继卫 岳振星

引用本文:
Citation:

钛酸锶钡材料在外加电场作用下的拉曼光谱研究

张奇伟, 翟继卫, 岳振星

Raman spectra studies on (Ba,Sr)TiO3 ceramics under dc electric fields

Zhang Qi-Wei, Zhai Ji-Wei, Yue Zhen-Xing
PDF
导出引用
  • 采用传统的固相反应烧结方法制 备BaxSr1-xTiO3(0.40≤ x ≤0.70)陶瓷,借助于Raman散射光谱,研究了陶瓷样品在不同原位电场作用下Raman振动模式的变化,观察到居里温度附近显著的电场诱导的四方–立方相之间的转变. 结果表明A1(TO3)和E(TO4)两种振动模式与晶体的结构存在密切的联系,这两种模式源于O-Ti-O沿晶格中c轴的方向和ab面内的振动. A1(TO3)/E(TO4)之间Raman峰的相对强度比,随外加场强的增加明显升高,顺电相逐渐转变为铁电相,晶格的畸变越来越明显,其宏观性能上表现为介电常数的降低,可调率的增加. 同时对居里温度附近电场诱导的结构相变对顺电相下介电非线性的贡献进行了探讨.
    BaxSr1-xTiO3 (0.40≤x≤0.70) ceramics have been prepared by the conventional solid-state reaction method. The changes of vibration modes in the pure BaxSr1-xTiO3 system have been investigated for an in-situ electric field by Raman spectra, and the transition from the cubic phase to tetragonal phases were obviously observed near the Curie temperature (Tc). Detailed results indicate that the A1(TO3) and E(TO4) modes correspond to the vibrations of O-Ti-O bond along a-axis in the ab plane, which are strongly related to the lattice structure of ABO3. With increasing electric field, the intensity of A1(TO3)/E(TO4) ratio is increased, suggesting that more and more paraelectric states are transformed into ferroelectric states, thus leading to the deformation of lattice, which results in the decrease of dielectric constant and the increase of tunability. The electric-induced-structure phase transitions responsible for the nonlinear dielectric properties are also discussed.
    • 基金项目: 内蒙古科技大学创新基金(批准号:2012NCL002)、清华大学新型陶瓷与精细工艺国家重点实验室(批准号:KF201308)和国家重点基础研究发展计划(批准号:2009CB623302)资助的课题.
    • Funds: Project supported by the Innovation Fund Project of Inner Mongolia University of Science and Technology, China (Grant No. 2012NCL002), the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, China (Grant No. KF201308), and the Ministry of Sciences and Technology of China through 973-Project (Grant No. 2009CB623302).
    [1]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5

    [2]

    Nenasheva E A, Kanareykin A D, Kartenko N F, Dedyk A I, Karmanenko S F 2004 J. Electroceram. 13 235

    [3]

    Maiti T, Guo R, Bhalla A S 2007 Appl. Phys. Lett. 90 182901

    [4]

    Wei X Y, Yao X 2003 Mater. Sci. and Eng. B 99 74

    [5]

    Liang R H, Dong X L, Chen Y, Cao F, Wang Y L 2005 Acta Phys. Sin. 54 4914 (in Chinese) [梁瑞红, 董显林, 陈莹, 曹菲, 王永龄 2005 物理学报 54 4914]

    [6]

    Zhong W L 1996 Ferroelectrics (Beijing: Science Press) p430 (in Chinese) [钟维烈 1996 铁电物理学 (北京: 科学出版社) 第430页]

    [7]

    Johnson K M 1962 J. Appl. Phys. 33 2826

    [8]

    Shang X Z, Chen W, Cao WQ 2012 Acta Phys. Sin. 61 217701 (in Chinese) [尚勋忠, 陈威, 曹万强 2012 物理学报 61 217701]

    [9]

    Diamond H 1961 J. Appl. Phys. 32 909

    [10]

    Guerville F De, Marssi M EI, Raevski I P, Yuzyuk Yu I 2006 Phys. Rev. B 74 064107

    [11]

    Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 017803

    [12]

    Osada M, Kakihana M, Wada S, Noma T, Cho W S 1999 Appl. Phys. Lett. 75 3393

    [13]

    Akimov I A, Sirenko A A, Clark A M, Hao J H, Xi X X 2000 Phys. Rev. Lett. 84 4625

    [14]

    Anokhin A S, Yuzyuk Yu I, Golovko Yu I, Mukhortov V M, Marssi M EI 2011 J. Appl. Phys. 109 074111

    [15]

    Naik V M, Haddad D, Naik R, Mantese J, Schubring N W, Micheli A L, Auner G W 2003 J. Appl. Phys. 93 1731

    [16]

    Wang Y X, Zhong W L, Wang C L, Zhang P L, Su X T 2002 Chin. Phys. 11 714

    [17]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford)

    [18]

    Ang C, Bhalla A S, Cross L E 2001 Phys. Rev. B 64 184104

    [19]

    Zhang C H, Xu Z, Gao J J, Zhu C J, Yao X 2011 Chin. Phys. B 20 097702

    [20]

    Kuo S Y, Liao W Y, Hsieh W F 2001 Phys. Rev. B 64 224103

    [21]

    Zhang Q W, Zhai J W, Kong L B, Yao X 2012 J. Appl. Phys. 112 124112

  • [1]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5

    [2]

    Nenasheva E A, Kanareykin A D, Kartenko N F, Dedyk A I, Karmanenko S F 2004 J. Electroceram. 13 235

    [3]

    Maiti T, Guo R, Bhalla A S 2007 Appl. Phys. Lett. 90 182901

    [4]

    Wei X Y, Yao X 2003 Mater. Sci. and Eng. B 99 74

    [5]

    Liang R H, Dong X L, Chen Y, Cao F, Wang Y L 2005 Acta Phys. Sin. 54 4914 (in Chinese) [梁瑞红, 董显林, 陈莹, 曹菲, 王永龄 2005 物理学报 54 4914]

    [6]

    Zhong W L 1996 Ferroelectrics (Beijing: Science Press) p430 (in Chinese) [钟维烈 1996 铁电物理学 (北京: 科学出版社) 第430页]

    [7]

    Johnson K M 1962 J. Appl. Phys. 33 2826

    [8]

    Shang X Z, Chen W, Cao WQ 2012 Acta Phys. Sin. 61 217701 (in Chinese) [尚勋忠, 陈威, 曹万强 2012 物理学报 61 217701]

    [9]

    Diamond H 1961 J. Appl. Phys. 32 909

    [10]

    Guerville F De, Marssi M EI, Raevski I P, Yuzyuk Yu I 2006 Phys. Rev. B 74 064107

    [11]

    Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 017803

    [12]

    Osada M, Kakihana M, Wada S, Noma T, Cho W S 1999 Appl. Phys. Lett. 75 3393

    [13]

    Akimov I A, Sirenko A A, Clark A M, Hao J H, Xi X X 2000 Phys. Rev. Lett. 84 4625

    [14]

    Anokhin A S, Yuzyuk Yu I, Golovko Yu I, Mukhortov V M, Marssi M EI 2011 J. Appl. Phys. 109 074111

    [15]

    Naik V M, Haddad D, Naik R, Mantese J, Schubring N W, Micheli A L, Auner G W 2003 J. Appl. Phys. 93 1731

    [16]

    Wang Y X, Zhong W L, Wang C L, Zhang P L, Su X T 2002 Chin. Phys. 11 714

    [17]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford)

    [18]

    Ang C, Bhalla A S, Cross L E 2001 Phys. Rev. B 64 184104

    [19]

    Zhang C H, Xu Z, Gao J J, Zhu C J, Yao X 2011 Chin. Phys. B 20 097702

    [20]

    Kuo S Y, Liao W Y, Hsieh W F 2001 Phys. Rev. B 64 224103

    [21]

    Zhang Q W, Zhai J W, Kong L B, Yao X 2012 J. Appl. Phys. 112 124112

计量
  • 文章访问数:  2097
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-29
  • 修回日期:  2013-09-03
  • 刊出日期:  2013-12-05

钛酸锶钡材料在外加电场作用下的拉曼光谱研究

  • 1. 内蒙古科技大学稀土学院, 包头 014010;
  • 2. 同济大学功能材料研究所, 上海 200092;
  • 3. 清华大学新型陶瓷与精细工艺国家重点实验室, 北京 100084
    基金项目: 

    内蒙古科技大学创新基金(批准号:2012NCL002)、清华大学新型陶瓷与精细工艺国家重点实验室(批准号:KF201308)和国家重点基础研究发展计划(批准号:2009CB623302)资助的课题.

摘要: 采用传统的固相反应烧结方法制 备BaxSr1-xTiO3(0.40≤ x ≤0.70)陶瓷,借助于Raman散射光谱,研究了陶瓷样品在不同原位电场作用下Raman振动模式的变化,观察到居里温度附近显著的电场诱导的四方–立方相之间的转变. 结果表明A1(TO3)和E(TO4)两种振动模式与晶体的结构存在密切的联系,这两种模式源于O-Ti-O沿晶格中c轴的方向和ab面内的振动. A1(TO3)/E(TO4)之间Raman峰的相对强度比,随外加场强的增加明显升高,顺电相逐渐转变为铁电相,晶格的畸变越来越明显,其宏观性能上表现为介电常数的降低,可调率的增加. 同时对居里温度附近电场诱导的结构相变对顺电相下介电非线性的贡献进行了探讨.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回