搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多能级里德堡原子中实现3.4 GHz微波增强测量

薛晶晶 李若楠 胡雪松 孙培晟 周海涛 张俊香

引用本文:
Citation:

多能级里德堡原子中实现3.4 GHz微波增强测量

薛晶晶, 李若楠, 胡雪松, 孙培晟, 周海涛, 张俊香

Enhanced sensing of 3.4 GHz microwave in multi-level Rydberg atomic system

XUE Jingjing, LI Ruonan, HU Xuesong, SUN Peisheng, ZHOU HaiTao, ZHANG Junxiang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 里德堡原子微波测量系统是不同于传统电子微波测量的新型全光学测量技术,它利用里德堡原子与微波场的强相干耦合效应,将微波场转化为原子相干光谱的特性测量,目前已成为高灵敏度高精度微波测量的主要研究领域。微波场与里德堡原子相干耦合过程中的退相干机理会极大影响微波场与相干光谱的转换效率,从而影响微波电场测量灵敏度。我们实验研究了在多能级里德堡铯原子系统中,实现中心频率为3.4GHz微波测量的最佳增强条件以及0.3GHz动态范围测量。利用铯原子D1线和D2线构成的多能级光学泵浦效应减小里德堡原子的退相干,从而增强里德堡原子的电磁诱导透明(EIT)量子相干特性,以及增强微波场作用产生的EIT-AT分裂谱,实现微波场的增强测量。
    The Rydberg-based microwave detection is an all-optical technology via using strong coherent interaction between Rydberg atoms and microwave field. Different from the traditional microwave meter, the Rydberg atomic sensing is a new-type microwave detector that transfers the microwave into a coherent optical spectrum, and attracts the rising interests due to its high sensibility. For this kind of sensor, the coherent effect induced by the coupling of atoms with microwave plays the key role, and the underline decoherence may decreases the sensitivity. In this work, we experimentally demonstrate a multi-level Rydberg atomic scheme with optimized quantum coherence that enhance both of the bandwidth and sensitivity for 4GHz microwave sensing. Using Optical pumping at D1 line, we show the enhanced quantum coherence of Rydberg electromagnetically induced transparency (EIT) and microwave induced Autler-Townes(AT) splitting in EIT Windows. Based on the enhanced EIT-AT spectrum, the enhanced sensitivity at 3.4GHz with 0.3GHz bandwidth can be realized. The experimental results show that in the stepped Rydberg EIT system, the spectral width of EIT and microwave field EIT-AT can be narrowed by OP, so the sensitivity of microwave electric field measurement can be improved. After optimizing the EIT amplitude and adding single-frequency microwaves, the sensitivity of the microwave electric field measurement observed by the A-T splitting interval was improved by 1.3 times. This work provides a reference for the application of atomic microwave detection.
  • [1]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019Opt. Express 278848

    [2]

    Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63

    [3]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019IEEE Antennas Wirel Propag Lett 181853

    [4]

    Meyer D H, Kunz P D, Cox K C 2021Phys. Rev. A 15014053

    [5]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021Appl. Phys. 129154503

    [6]

    Anderson D A, Sapiro R E, Raithel G 2021IEEE Transactions on Antennas and Propagation 69 2455

    [7]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021Appl. Phys. Lett. 118114001

    [8]

    Meyer D H, Kunz P D, Cox K C 2021Phys. Rev. Appl. 15 014053

    [9]

    Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alú A, Ziolkowski R W 2022Appl. Phys. Lett. 120204001

    [10]

    Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [11]

    Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024Chinese Phys. B 33 050702

    [12]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016Appl. Phys. Lett. 108 174101

    [13]

    Jia F D, Yu Y H, Liu X B, Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2022J. Appl. Phys. 132 244401

    [14]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2023Appl. Phys. Lett. 122 161103

    [15]

    Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110

    [16]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432

    [17]

    Chopinaud A, Pritchard J D 2021Phys. Rev. Applied 16 024008

    [18]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021Phys. Rev. A 104043103

    [19]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020Nat. Phys. 16911

    [20]

    Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022Appl. Phys. Lett. 121 011101

    [21]

    Mohapatra A K, Jackson T R, Adams C S 2007Phys. Rev. Lett. 98 113003

    [22]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 1715821

    [23]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017Sci. Rep. 742981

    [24]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456

    [25]

    Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020Appl. Opt. 59 2108

    [26]

    Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021IEEE Trans. Quantum Eng. 2 1

    [27]

    Li J K,Yang W G,Song Z F,Zhang H,Zhang L J,Zhao J M,Jia S T 2015Acta Phys. Sin.64163201[李敬奎,杨文广,宋振飞,张好,张临杰,赵建明,贾锁堂2015物理学报64 163201]

    [28]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017Sci. Rep. 79726

    [29]

    Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499

    [30]

    He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013Phys. Rev. A 87 033402

    [31]

    Moon H S, Lee L, Kim J B 2008Opt. Express 1612163

    [32]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010Phys. Rev. A 81 043803

    [33]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018Opt. Express 26 29931

    [34]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021Appl. Phys. Lett. 119 214001

    [35]

    Prajapati N, Akulshin A M, Novikova I 2018J. Opt. Soc. Am. B 35 1133

    [36]

    Akulshin A M, Orel A A, McLean R J 2012J. Phys. B 45 015401

    [37]

    Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J, Li Y X, Peng Y D 2020J. Opt. Soc. Am. B 371664

    [38]

    Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022Front. Phys. 10 846687

    [39]

    Wang Q X,Wang Z H,Liu Y X,Guan S J,He J,Zhang P F,Li G,Zhang T C 2023Acta Phys. Sin.72 087801[王勤霞,王志辉,刘岩鑫,管世军,何军,张鹏飞,李刚,张天才2023物理学报72 087801]

    [40]

    Moon H S, Lee W K, Lee L, Kim J B 2018IEEE Conf. Publ. 85 3965

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析. 物理学报, doi: 10.7498/aps.74.20241362
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, doi: 10.7498/aps.73.20231778
    [3] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究. 物理学报, doi: 10.7498/aps.73.20240162
    [4] 谢轲, 罗继红, 姚星灿. 基于退磁冷却的镝原子玻色-爱因斯坦凝聚制备. 物理学报, doi: 10.7498/aps.73.20241299
    [5] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [6] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, doi: 10.7498/aps.72.20231041
    [7] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, doi: 10.7498/aps.72.20222059
    [8] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, doi: 10.7498/aps.71.20220972
    [9] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [10] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, doi: 10.7498/aps.69.20200649
    [11] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, doi: 10.7498/aps.68.20182283
    [12] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器. 物理学报, doi: 10.7498/aps.67.20172636
    [13] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, doi: 10.7498/aps.66.193701
    [14] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, doi: 10.7498/aps.64.133202
    [15] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [16] 蒋利娟, 张现周, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯锂原子的相干激发与控制. 物理学报, doi: 10.7498/aps.62.013101
    [17] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, doi: 10.7498/aps.61.163202
    [18] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, doi: 10.7498/aps.57.5593
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, doi: 10.7498/aps.37.983
计量
  • 文章访问数:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回