搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6Li32S双原子分子的光谱和辐射跃迁理论研究

刘华兵 袁丽 李秋梅 谌晓洪 杜泉 金蓉 陈雪连 王玲

引用本文:
Citation:

6Li32S双原子分子的光谱和辐射跃迁理论研究

刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲

Theoretical study of the spectra and radiative transition properties of 6Li32S

Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin
PDF
导出引用
  • 在aug-cc-pV5Z/CASSCF/MRCI水平上讨论了6Li32S双原子分子的9个较低能量电子态(X2, a4, B2, b4, A2+, C2, F2-, E2+和D2)的势能函数和光谱常数; 其中基态平衡核间距、谐振频率、转动常数等均与实验值相符; b4, C2, D2 态的平衡核间距均超过了0.4 nm, 并且离解能较小, 不稳定. D2态是离子对态, 离解极限为Li+(1Sg) + S-(1Sg). 预测了最低激发态A2+跃迁到基态X2 的电子跃迁偶极矩、爱因斯坦自发发射系数、弗兰克-康登因子和辐射寿命.
    Low-lying electronic states (X2, A2+, a4, B2, b4, C2, F2-, E2+ and D2) of the 6Li32S molecule are computed at the aug-cc-pV5Z/MRCI level. The potential energy curves are presented for these states; the corresponding spectroscopic constants are reported. Electronic transition moment, Einstein coefficients, Frank-Condon factors and radiative lifetimes for the A2+-X2, B2 -X2, C2 -X2 systems are calculated. The balanced distance between two nuclei, harmonic frequencies and inertia moment of ground state X2 are predicted in this paper, and they are in accordance with their corresponding experimental data. The balance distances between the two nuclei in the electronic states of b4, C2, D2 are all longer than 4 , so they are very unstable. The D2 electronic state will dissociate to Li+ ion and S- ion: they are far from each other. The electronic transition dipole moment, Einstein coefficient, Franck-Condon factor and radiative lifetime in transition from lowest excited A2+ state to ground state X2 are predicted in this paper. The electronic transition dipole moments from three low lying electronic state A2+, B2 and C2 to the ground state X2 are calculated at the aug-cc-pV5 Z/MRCI level. The results show that the electronic transition dipole moment of A2+X2 has a small positive value while the nucleus distance is short, and rapidly decreases down to a small negative value with the nucleus distance increasing to around balance distance. Then it is stable about zero value while the nucleus distance continually increases. The electronic transition dipole moment of B2 X2 has a small negative value (which is larger than that of A2+ X2) at a short nucleus distance, and rapid increases up to a small positive value with the nucleus distance increasing to about balance distance. Then it slows down to zero while the nucleus distance increases to about 4. Finally it turns stable about zero value while the nuclei distance continually increases. The electronic transition dipole moment of C2 X2 is more sophisticated, but it has a large value than other two transitions. So the low-lying electronic state A2+ is stabler than B2, and B2 is stabler than C2 . The results also show that the ground state X2 and the lowest excited state A2+ have similar IR frequencies, their difference is within 8 cm-1, so they cannot be distinguished by IR spectrum. The A2+ has a balanced distance about 0.076 shorter than ground X2, which implies that A2+ has stronger chemical bond than ground X2 .
    [1]

    Nagata H, Chikusa Y 2014 J. Power Sources 264 206

    [2]

    Ji X, Nazar L F 2010 J. Mater. Chem. 20 9821

    [3]

    Yin Y X, Xin S, Guo Y G, Wan L J 2013 Angew. Chem. Int. Ed. 52 13186

    [4]

    Gao G Y, Yao K L, Song M H, Liu Z L 2011 J. Magn. Magn. Mater. 323 2652

    [5]

    Khadri, Ndome H, Lahmar S, Lakhdar Z B, Hochlaf M 2006 J. Mol. Spect. 237 232

    [6]

    Berdyugina S V, Livingston W C 2002 Astron. Astrophys. 387 L6

    [7]

    Lee E P F, Wright T G 2004 Chem. Phys. Lett. 397 194

    [8]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [9]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [10]

    Wemer H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [11]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 115 259

    [12]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [13]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [14]

    Laughoff S R, Davidson E R 1974 Int. J. Quant. Chem. 8 61

    [15]

    Le Roy R J 2007 LEVEL8.0: A Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663

    [16]

    Brewster M A, Ziurys L M 2001 Chem. Phys. Lett. 349 249

    [17]

    Herzberg G 1950 Spectra of Diatomic Molecules (New York: Van Nostrand)

    [18]

    Bernath P F 2005 Spectra of Atoms and Molecules (2nd Ed.) (New York: Oxford University Press)

    [19]

    Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101 (in Chinese) [郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 物理学报 63 213101]

    [20]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 物理学报 63 043102]

  • [1]

    Nagata H, Chikusa Y 2014 J. Power Sources 264 206

    [2]

    Ji X, Nazar L F 2010 J. Mater. Chem. 20 9821

    [3]

    Yin Y X, Xin S, Guo Y G, Wan L J 2013 Angew. Chem. Int. Ed. 52 13186

    [4]

    Gao G Y, Yao K L, Song M H, Liu Z L 2011 J. Magn. Magn. Mater. 323 2652

    [5]

    Khadri, Ndome H, Lahmar S, Lakhdar Z B, Hochlaf M 2006 J. Mol. Spect. 237 232

    [6]

    Berdyugina S V, Livingston W C 2002 Astron. Astrophys. 387 L6

    [7]

    Lee E P F, Wright T G 2004 Chem. Phys. Lett. 397 194

    [8]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [9]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [10]

    Wemer H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [11]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 115 259

    [12]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [13]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [14]

    Laughoff S R, Davidson E R 1974 Int. J. Quant. Chem. 8 61

    [15]

    Le Roy R J 2007 LEVEL8.0: A Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663

    [16]

    Brewster M A, Ziurys L M 2001 Chem. Phys. Lett. 349 249

    [17]

    Herzberg G 1950 Spectra of Diatomic Molecules (New York: Van Nostrand)

    [18]

    Bernath P F 2005 Spectra of Atoms and Molecules (2nd Ed.) (New York: Oxford University Press)

    [19]

    Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101 (in Chinese) [郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 物理学报 63 213101]

    [20]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 物理学报 63 043102]

  • [1] 郝丹辉, 孔凡杰, 蒋刚. PuNO分子结构与势能函数. 物理学报, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [2] 谌晓洪, 蒋燕, 刘议蓉, 王玲, 杜泉, 王红艳. TiO, O2 和TiO2的分析势能函数及光谱研究. 物理学报, 2012, 61(1): 013101. doi: 10.7498/aps.61.013101
    [3] 熊晓玲, 魏洪源, 陈文. TiN分子基态(X2)结构和势能函数. 物理学报, 2012, 61(1): 013401. doi: 10.7498/aps.61.013401
    [4] 许永强, 彭伟成, 武华. YH,YD,YT分子基态的结构与势能函数. 物理学报, 2012, 61(4): 043105. doi: 10.7498/aps.61.043105
    [5] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数. 物理学报, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [6] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数. 物理学报, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [7] 韩晓琴, 蒋利娟, 刘玉芳. MgB和MgB2(1A1)的结构与解析势能函数. 物理学报, 2010, 59(7): 4542-4546. doi: 10.7498/aps.59.4542
    [8] 朱吉亮, 任廷琦, 王庆美. SH(D)和OH(D)自由基基态的结构与势能函数. 物理学报, 2009, 58(5): 3047-3051. doi: 10.7498/aps.58.3047
    [9] 蒋利娟, 刘玉芳, 刘振中, 韩晓琴. SiX2(X=H,F)分子的结构与势能函数. 物理学报, 2009, 58(1): 201-208. doi: 10.7498/aps.58.201
    [10] 杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和. BeH, H2和BeH2的分子结构和势能函数. 物理学报, 2009, 58(1): 178-184. doi: 10.7498/aps.58.178
    [11] 王庆美, 任廷琦, 朱吉亮. GaH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5270-5273. doi: 10.7498/aps.58.5270
    [12] 王庆美, 任廷琦, 朱吉亮. BiH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5266-5269. doi: 10.7498/aps.58.5266
    [13] 徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋. 密度泛函方法对SiO分子基态(X 1Σ+)势能函数的研究. 物理学报, 2008, 57(12): 7577-7580. doi: 10.7498/aps.57.7577
    [14] 孔凡杰, 杜际广, 蒋 刚. PdCO分子结构与势能函数. 物理学报, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [15] 徐 梅, 汪荣凯, 令狐荣锋, 杨向东. BeH,BeD,BeT分子基态(X2Σ+)的结构与势能函数. 物理学报, 2007, 56(2): 769-773. doi: 10.7498/aps.56.769
    [16] 杜 泉, 王 玲, 谌晓洪, 高 涛. VOn±(n=0,1,2)的势能函数与光谱常数研究. 物理学报, 2006, 55(12): 6308-6314. doi: 10.7498/aps.55.6308
    [17] 黄 萍, 朱正和. CrHn(n=0,+1,+2)分子及离子的势能函数. 物理学报, 2006, 55(12): 6302-6307. doi: 10.7498/aps.55.6302
    [18] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
    [19] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖. CUO分子结构与势能函数. 物理学报, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [20] 罗德礼, 孙颖, 刘晓亚, 蒋刚, 蒙大桥, 朱正和. UH和UH2分子的结构与势能函数. 物理学报, 2001, 50(10): 1896-1901. doi: 10.7498/aps.50.1896
计量
  • 文章访问数:  3517
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-05
  • 修回日期:  2015-11-26
  • 刊出日期:  2016-02-05

6Li32S双原子分子的光谱和辐射跃迁理论研究

    基金项目: 西华大学研究生创新基金(批准号: ycjj2014132)、西华大学研究生创新基金(批准号: ycjj2015165)和四川省教育厅重点项目(批准号: 14ZA0113)资助的课题.

摘要: 在aug-cc-pV5Z/CASSCF/MRCI水平上讨论了6Li32S双原子分子的9个较低能量电子态(X2, a4, B2, b4, A2+, C2, F2-, E2+和D2)的势能函数和光谱常数; 其中基态平衡核间距、谐振频率、转动常数等均与实验值相符; b4, C2, D2 态的平衡核间距均超过了0.4 nm, 并且离解能较小, 不稳定. D2态是离子对态, 离解极限为Li+(1Sg) + S-(1Sg). 预测了最低激发态A2+跃迁到基态X2 的电子跃迁偶极矩、爱因斯坦自发发射系数、弗兰克-康登因子和辐射寿命.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回